
Automated Track Projection Bias Removal Using
Frechet Distance and Road Networks

Lingji Chen and Ravi Ravichandran
BAE Systems

Burlington, MA, USA

Abstract—When target tracks produced by a video tracker are
projected to the Earth’s surface, they often become a (slightly)
rotated, stretched and translated version of the true tracks due
to sensor calibration errors. If the correspondence between the
projected tracks and the roads they are on can be established, a
homography can then be computed and the projection bias can
be removed. This correspondence is typically easy to establish by
a human operator; however, our objective is to seek an automated
solution to reduce an operator’s work load, and the problem is
challenging due to the lack of fiduciary targets. Building upon
the body of research in the GPS community, the computer vision
community as well as the tracking community, we have developed
a new algorithm to compute a discrete Frechet distance from a
polygonal curve to a planar map, and use it to automatically
establish the above correspondence and remove the projection
bias. Simulations with synthetic data show the efficacy of this
innovative approach.

I. INTRODUCTION

Target tracks produced by EO/IR sensors in the image plane
often need to be projected onto the surface of the Earth for
subsequent display or for fusion with tracks produced by other
sensors. A bias in the parameters used for this projection,
for example, heading or pitch of the platform that carries the
sensors, leads to a projective bias in the ground tracks: They
are typically a rotated, stretched and translated version of the
true tracks. Figure 1 shows a simulated example using the
road networks of the Greater Boston area, where true tracks
are shown in green and biased tracks are shown in red; the
details of data generation will be presented in Section V. It
can be seen that on the upper left (near MIT), the red tracks
are to the west of the green tracks, while on the lower right (in
the downtown area), they are to the east. How to automatically
remove such a bias in a batched processing step is the focus
of this paper.

It is straightforward to show that if the tracks lie on an
approximately flat surface, then the bias can be described and
corrected by a homography that transforms the biased track
positions to their true positions. Our aim is to automatically
calculate this homography and make the correction.

The contribution of this paper is twofold. First, we have
developed a new algorithm that extends the map matching
algorithm in [1] to the discrete case, and the discrete distance
in [2] to the case of a planar map. Second, we have integrated
various algorithm components to solve the particular problem
of automated bias removal without fiduciary tracks.

Track bias removal has been studied extensively and many
methods have been proposed in literature. To provide some
context to our particular problem formulation and approach,
we mention a few published results here, which are by no
means comprehensive. The problem of removing biases by
the fusion center from state estimates produced by local, bias-
ignorant trackers, when track-to-track association is known, is
considered in [3]. The problem of calculating the probability
of track-to-track association given data from biased sensors
is considered in [4]. In [5], the problem of jointly obtaining
the optimal track-to-track association and the estimation of
the (relative, additive) sensor bias is formulated as a nonlin-
ear mixed integer programming problem and solved using a
multistart local search heuristic. The work reported in [6] is
closely related to ours; there they obtain matchings of biased
tracks to roads by treating both the road network and the tracks
as binary images, and using feature finding methods in image
processing. It can be seen from Figure 1 that, when roads
are dense and similar, the most prominent features are often
the turns (intersections). Our method can be thought of as a
natural extension to [6] that considers not only the turns, but
all points on a track/road. It is also interesting to note the work
in [7], where measurements are filtered into tracks with road
map assistance, and intersecting roads are handled with an
interacting multiple model (IMM) scheme. More recent work
that deals with bias estimation/removal includes [8], [9] and
[10].

Our work also borrows from the large body of research
in map matching from the GPS community, where a main
problem is, qualitatively speaking, to put GPS dots (recorded
by a device) back on the road. Interested readers are referred
to [11], [12], [13], [14], [15], and the references therein. It is
worth emphasizing that our problem formulation is a simpler
one: There is a homography that relates the biased tracks to
truth tracks, and map matching is used as an intermediate step
for finding the homography, not as an end result.

The paper is organized as follows. Section II provides
a summary of formulas used to find a homography from
matched lines (as opposed to the canonical form of matched
points). Section III presents a discrete map matching algorithm
based on discrete Frechet distance, which to the best of our
knowledge has not been reported in literature. Automated bias
removal is summarized in Section IV, and the efficacy of the
approach is illustrated in Section V using simulated tracks.
Section VI draws some conclusions and also speculates on the
future direction of this work.
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Fig. 1. Boston road network with simulated true tracks and biased tracks.

II. FINDING HOMOGRAPHY FROM MATCHED LINES

Before we present an automated procedure, we first de-
scribe how the bias correction task can be performed manually.
We can visually inspect a biased track and compare it with the
road segments “nearby” on the given road network, and if we
believe we have found a match, we mark the correspondence
between the line segments in the tracks and the line segments
on the road. Repeat this for many biased tracks, and we can
obtain many pairs of matchings and solve for the homography
through the matched lines.

We summarize here formulas from [16] that are relevant
for the above task. Let [x1, x2]T be a point in a plane (where
a superscript T denotes transpose). Since a line in the plane
is represented by an equation such as ax1 + bx2 + c = 0, the
line is identified with the homogeneous point [a, b, c]T . With
the homogeneous representation x , [x1, x2, 1]

T of the point
[x1, x2]

T , we see that the point x lies on the line l , [a, b, c]T

if and only if their inner product is zero, i.e., xT l = 0. In
the following we will drop the bold face for vectors when the
meaning is clear from context.

Let H be the 3 × 3 homography matrix that transforms a
homogeneous point x into x′, i.e.,

x′ = Hx.

If l is a line passing through x, then

l′ = H−T l

is a line passing through x′, because

x′T l′ = (xTHT )(H−T l) = xT l = 0.

Thus, if we treat l′ and l as homogeneous points and find the
homography that transforms the former to the latter, then the
transpose of the found homography is H since

HT l′ = l.

We note in passing that when we identify a line segment
lab using its two end points xa and xb, the homogeneous
representation of the line is given by the cross product of the
homogeneous representations of the end points, i.e.,

lab = xa × xb.

It can be readily verified that xa is on the line because xTa lab =
0, and so is xb.

How to compute homography, especially in a robust fash-
ion, can be found in [16]. Because of the availability of open
source libraries such as OpenCV (Open Source Computer
Vision Library) [17], we treat this as a “library calling”
subproblem and will not go into its details here.
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It is now clear that one way to automate the batched process
of removing the projective bias discussed earlier is to automate
the matching of biased tracks to the road segments on the road
network. In the following we present a new algorithm that
maps a polygonal curve to segments on a planar map based
on the discrete Frechet distance.

III. FRECHET DISTANCE AND MAP MATCHING

A. Continuous Frechet distance

The Frechet distance is a measure of similarity between
curves that takes into account the location and ordering of
the points along the curves. Intuitively, the Frechet distance
between two curves is the minimum length of a leash required
to connect a dog and its owner, constrained on two separate
paths, as they walk without backtracking along their respective
curves from one endpoint to the other [18].

More specifically [19], let f : [a, a′]→ R2 and g : [b, b′]→
R2 be curves. Then their Frechet distance is defined as

δF (f, g) , inf
α,β

max
t∈[0,1]

d (f(α(t)), g(β(t))) ,

where d(·, ·) is a chosen distance function, and α : [0, 1] →
[a, a′] and β : [0, 1] → [b, b′] range over continuous and non-
decreasing functions only (and represent a choice of walking
the dog in our analogy).

Alt and Godau presented an algorithm to compute the
Frechet distance between two polygonal curves in [19], based
on the idea of a free space. If P and Q are two line segments,
then the free space Fε describes all pairs of points, one on P
and one on Q, whose distance is at most ε:

Fε , {(s, t) ∈ [0, 1]2 | d(P (s), Q(t)) ≤ ε}.

This concept is illustrated in Figure 2. The same concept is
generalized to polygonal curves and illustrated in Figure 3.

Fig. 2. From [19]. Left: Two line segments and a given distance; right: the
corresponding free space in white.

It is proved that δF ≤ ε holds exactly if there exists a curve
within the free space Fε from the lower left corner to the upper
right corner which is monotone in both coordinates. Thus the
Frechet distance can be found through a search procedure, by
checking at each iteration whether a connecting curve exists.

B. Discrete Frechet distance

The algorithm that Alt and Godau described to determine
the existence of a connecting curve is quite elaborate and not
straightforward to implement. A discrete counterpart has been
proposed and studied in [2], where only distances between the

Fig. 3. From [19]. Left: two polygonal curves and a given distance; right:
the corresponding free space in white.

end points of the polygonal curves are considered (and there-
fore the dog analogy has to be replaced by a “magical frog”
analogy). More specifically, let P and Q be polygonal curves
defined by the end points (u1, u2, . . . , up) and (v1, v2, . . . , vq)
respectively. We will also use the notation P (i) to denote ui. A
non-backtracking discrete walk of P with length m is defined
by a sequence of m indices α = {α1 = 1, α2, . . . , αm = p}
such that the walker either stops, i.e., αi+1 = αi, or goes one
step forward, i.e., αi+1 = αi + 1. Then the discrete Frechet
distance between P and Q is defined by

δdF (P,Q) , inf
m,α,β

max
k=1,...,m

d (P (αk), Q(βk)) ,

where d(·, ·) is a chosen distance function, and α and β are
non-backtracking discrete walks of P and Q with length m
respectively.

It is easy to see that if we “subdivide” the two polygonal
curves further and further, their discrete Frechet distance δdF
should approach their continuous Frechet distance δF . In fact,
the following bounds are established in [2]:

δF (P,Q) ≤ δdF (P,Q) ≤ δF (P,Q) + `max,

where `max is the largest among the segment lengths of P and
Q.

The discrete Frechet distance, and the corresponding walk
(which is termed “coupling” in [2]), can be computed directly
using dynamic programming; a MATLAB implementation can
be found at [20].

C. Continuous map matching

Alt et al [1] also extended the concept of the free space to
the case of a polygonal curve and a planar map, in order to find
the matching line segments in the planar map that are closest
to the polygonal curve according to the continuous Frechet
distance. This idea is illustrated in Figure 4.

Once again, this algorithm which we call continuous map
matching is quite elaborate and not straightforward to imple-
ment. It is desirable to use the discrete Frechet distance, but
the dynamic programming approach for two curves does not
seem to be readily extendable to the case of a curve and a
map.
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Fig. 4. From [1]. Left: The planar map G; right: The free space surface
formed by the free space diagrams glued together. The graph G is “on the
paper” and so are the “L” points. The “R” points are “sticking out of the paper.”
The gray curve illustrates a nondecreasing path through the free space.

D. Discrete map matching

We have developed a discrete version of the map matching
algorithm by adopting the idea of the free space but restricting
our attention to only the segment end points in the polygonal
curves. This is achieved by first constructing a free space
graph, which is illustrated in Figure 5 on Page 5. The con-
struction is inspired by [21] for calculating discrete Frechet
distance between two curves.

The construction of the free space graph can be qualita-
tively described as follows:

1) We are given a polygonal curve P and a planar graph
(or map) G. Take the natural ordering of the nP
segment end points (or nodes) of P and mark the
sequence on a horizontal line. Take any ordering of
the nG nodes of the map G and mark the sequence
on a vertical line. We will create a free space graph
with nG × nP nodes.

2) Each column of nodes in the free space graph is a
replica of the nodes in G, and has a corresponding
“node position” in P . See Figure 5.

3) Two nodes in the same column are connected if their
“original” nodes are connected in the map G. Two
nodes in adjacent columns are connected if they have
the same “original” nodes, or if their “original” nodes
are connected in G.

4) For a given distance parameter ε > 0, mark each node
in a column as
• free (denoted by a solid rectangle in Figure 5)

if its distance to the node on P that this
column corresponds to is less than or equal
to ε, or

• not-free (denoted by a dashed ellipse) other-
wise.

With the free space graph so constructed, it is straightfor-
ward to establish the following:

Proposition 1: There exists a path (consisting of line seg-
ments) in the map G with a discrete Frechet distance to the
polygonal curve P smaller than ε, if and only if the free space
graph constructed with ε as the distance parameter has a path

consisting of only free nodes from the first column on the left
to the last column on the right.

The existence of such a path can be decided by adding a
source node to the left and a sink node to the right, and calling
an algorithm such as Dijkstra’s in a standard graph library.
Optionally, edge weights can be added to the edges in the free
space graph, so that among all valid paths that can establish
the discrete Frechet distance upper bound, a “minimum length”
path can be chosen that has the least total sum of distances
between “coupling” nodes.

The discrete Frechet distance can then be found by a
(binary) search on the distance parameter ε. More efficient
parametric search methods are discussed in [22].

In Figure 5, the path is “1a → 2b → 3c,” meaning that
the matched line segments in the map is the polygonal curve
specified by Nodes 1, 2 and 3. For this example, it is easy to
see that the discrete Frechet distance from the track to the road
network is equal to the distance between Node 3 and Node c.

IV. AUTOMATED BIAS REMOVAL

In this section we combine the results discussed earlier and
present an outline of the automated bias removal algorithm:

1) Obtain road network data as a graph. Road network
data is typically stored in a shape file that lists each
road as a series of points. This has to be converted
to a graph with unique points as nodes and with
adjacency information between the nodes. Depending
on the sampling interval of the tracks to be corrected,
a long road may need to be further discretized to have
more points on it in order to match the “resolution”
of the tracks.

2) For each (biased) track, run the discrete map match-
ing algorithm described in the last section to obtain
its closest road segments. If the map is large, a
“gating” procedure should be employed first to limit
the candidate road segments to be within a certain
distance to the track.

3) Extract matched lines from each matching. This can
be done approximately: When there is a “simulta-
neous walk” on both P and Q, the two segments
involved can be considered a pair of matched lines.

4) With all the matched lines, compute the homography
as described in Section II using an OpenCV op-
tion that employs a robust regression method, either
RANSAC (Random Sample Consensus) [23] or Least
Median of Squares [24].

5) Using the homography computed, transform each
point on the biased track, to obtain its corresponding
point on the corrected track.

We emphasize once again that the map matching results
serve only as an intermediate step; the corrected tracks are not
the matched road segments but the result of a homography
transformation. Because of the use of a robust homography
finding method that tolerates outliers, the map matching results
do not have to be perfect. Figure 6 illustrates the outlier
rejection capability of the RANSAC algorithm [25].
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Fig. 5. Left: A map in black and a polygonal curve in red. Nodes for the former are denoted by “1” through “6,” while for the latter, “a” through “c.” Right:
The free space graph constructed for a given distance ε where free nodes are denoted by a solid rectangle.

Fig. 6. From [25]. Left: A data set with a line and outliers; Right: The fitted
line using RANSAC.

V. SIMULATIONS

To illustrate the efficacy of the proposed approach, we
performed studies using simulated data.

We downloaded road network data from a government
website [26] in the form of shape files. A shape file lists each
road as a series of points. To extract topological structure from
such data, we first determine all the points at intersections.
Then for each unique point in the road network, we list its
adjacent points on roads (and ignore the constraints of one-
way roads in this study). This yields a graph such that we can
apply the map matching algorithm. In our map structure we
also include a k-d tree (see [27] and [28]) so that when a track
is matched against the map, only the portion of the map that
is close enough to the track is used.

To perform Monte Carlo simulations, we adopt the fol-
lowing method of generating tracks for each simulation. We
start from a random point in the map and walk to one of its
neighboring points that have not been visited yet. Repeat this
until we have a track with a given number of points in it.
Repeat to get the desired number of tracks.

To simulate the projective bias, we transform truth tracks
as follows: We pick a point in the map to be the center. We
rotate the tracks by 0.5 degree, expand them by 2 percent, and
translate them by 5 meters to the east and 5 meters to the

north. One set of simulated data is shown in Figure 1, where
truth tracks are in green and biased tracks are in red.

We then perform map matching for each track using our
proposed algorithm. After we get a matching such as “1a →
2b → 3c” as illustrated in Figure 5, we declare that the track
segment “a → b” matches the road segment “1 → 2” and that
the track segment “b → c” matches the road segment “2 →
3”. Such correspondence is not always correct, but is correct
most of the time, which gives us enough good data to calculate
the underlying homography. This calculation is carried out by
using a MATLAB interface to OpenCV called mexopencv [29],
with the Least Median of Squares method.

After we find the homography, we apply it to the biased
tracks and obtain corrected tracks, as shown in Figure 7 on
Page 7, where corrected tracks are in red, and truth tracks are
in green but are not visible under the red tracks.

The bias removal shown in this simulation is almost perfect
because the relationship between the truth and biased tracks
is indeed characterized by a homography, which we have
successfully found through automated matching and robust
fitting. In practice, there can be complications such as the
following:

• The tracks may be noisy and may not be perfectly on
the road even without any projection bias.

• The spacing of points on a road network may be too
large compared to the spacing of points on a track,
resulting in matchings that do not reflect the true
relationship.

• The bias is large and the automated matching yields
too many outliers.

• There may be other types of biases present.

Further studies are needed to assess the effects of these factors
on automated bias removal.
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Fig. 7. Tracks with bias removed. Truth tracks in green are overwritten by corrected tracks in red.

VI. CONCLUSIONS AND FUTURE WORK

A projection bias is often present when video tracks are
projected to the surface of the Earth. To remove such a
bias we need to determine the corresponding homography,
which is conventionally calculated through matched points or
line segments. To automate this process we have presented a
method to match track segments to road segments based on the
discrete Frechet distance. Simulations show that the method
works well for a small projection bias.

The effect of the complicating factors listed in the previous
section should be studied in future work. In particular, when
the bias is large, Frechet distance alone, without considering
shapes and other topological features, may not produce enough
correct matchings to determine the homography accurately.
One possible way to alleviate the problem is an iterative
approach: After we obtain a matching between a set of
tracks T0 and road segments L0, instead of calculating the
homography that moves the tracks to align with the roads, we
could conceivably adjust the starting homography H0 along a
direction that can reduce the discrepancy between the two, and
apply the newly found H1 to the tracks, to obtain a new set
of (intermediate) tracks T1. Then we match this set of tracks
to the roads to obtain a new set of road segments L1, and
hopefully more matching results will be correct this time than
last time. Then we further adjust H1 to arrive at H2 and so on

and so forth, until the discrepancy cannot be reduced further.

Human eyes can perform the matching better than ma-
chines, but with data deluge and operator overload, automated
methods have an important role to play.
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