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Abstract 

Accelerometers and gyroscopes embedded in mobile 
devices have shown great potential for non-obtrusive gait 
biometrics by directly capturing a user's characteristic 
locomotion. Despite the success in gait analysis under 
controlled experimental settings using these sensors, their 
performance in realistic scenarios is unsatisfactory due to 
data dependency on sensor placement. In practice, the 
placement of mobile devices is unconstrained. In this 
paper, we propose a novel gait representation for 
accelerometer and gyroscope data which is both sensor­
orientation-invariant and highly discriminative to enable 
high-performance gait biometrics for real-world 
applications. We also adopt the i-vector paradigm, a state­
of the-art machine learning technique widely used for 
speaker recognition, to extract gait identities using the 
proposed gait representation. Performance studies using 
both the naturalistic McGill University gait dataset and 
the Osaka University gait dataset containing 744 subjects 
have shown dominant superiority of this novel gait 
biometrics approach compared to existing methods. 

1. Introduction 
Gait is the special pattern of human locomotion. It is 

fairly unique to an individual due to one's specific 
muscular-skeletal bio-mechanism. Humans can often 
effortlessly recognize acquaintances by the way they walk 
or jog. However, as a behavioral biometric, gait may also 
be affected by transient factors such as tiredness, sickness, 
emotions, etc. In addition, external factors such as clothes, 
shoes, carried loads, and ground characteristics influence 
gait as well [2]. 

Automatic gait biometrics, which studies gait using 
sensory data, has been an active research area receiving 
increasing attention over the years [4][15][18][25]. Similar 
to fingerprint and iris biometrics [13], gait biometrics can 
be performed for two purposes [14]: 

• identification, where a gait is compared to a database 
of enrolled gaits with known identities to determine whom 
the unknown gait belongs to, and 

• authentication, where a gait is compared to the 

enrolled gait data of a known person to validate his or her 
identity. 

In the past decade, accelerometers have been intensely 
researched for gait [6][20] and activity [3] analysis. More 
recently, gyroscopes have also been explored for body 
motion analysis [1 ][21]. These sensors directly measure 
locomotion when worn on a human body, opening 
possibilities for highly accurate gait biometrics. With the 
ubiquity of mobile devices embedded with accelerometers 
and gyroscopes, motion data can be collected continuously 
and effortlessly for unobtrusive gait-based authentication 
and identification as a mere consequence of a user 
carrying the mobile device around. 

Despite a surge in research efforts, gait biometrics using 
accelerometers and gyroscopes remain a challenge for 
practical applications due to data dependency on sensor 
placement: accelerations and rotations are measured along 
the sensor axis. The measurements change with sensor 

orientation even when body motion stays the same. Most 
existing research is conducted in fixed laboratory settings 
with restricted sensor placement to bypass this problem, 
and is vulnerable in real-world conditions where the 
placement of mobile devices is casual and even arbitrary. 
Although promising results have been reported in well­
controlled studies on gait biometrics using accelerometers, 
there is still a large performance gap between laboratory 
research and real-world applications. 

In this paper, we address the challenge of sensor 
orientation dependency in the collection of acceleration 
and rotation data. To do so, we compute invariant gait 
representations that are robust to sensor placement while 
preserving highly discriminative temporal and spatial gait 
dynamics and context. We advance the state of the art for 
gait biometrics using accelerometers and gyroscopes by: 

1. Directly computing gait features invariant to sensor 
rotation for robust matching and classification, unlike 
many existing works which make unrealistic 
assumptions of fixed sensor placement. 

2. Capturing the gait dynamics and motion interactions 
within gait cycles to be highly discriminative. 

3. Adopting the i-vector identity extraction, a prominent 
speaker authentication approach, for gait biometrics. 
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4. Sensibly fusing the accelerometer and gyroscope 
sensors for gait biometrics, and demonstrate for the 
first time that gyroscopes can be used to boost the gait 
biometrics accuracy using accelerometers. 

5. Enabling high performance realistic gait biometrics 
for a large population through a combination of the 
above advancements. 

The remainder of the paper is structured as follows. 
Section 2 surveys related work. Section 3 introduces a 
novel invariant gait representation. Section 4 describes the 

i-vector based gait classification procedure. Section 5 

presents gait biometrics experiments and performance 
studies. Section 6 draws conclusions, discusses the limits, 
and presents areas for future research. 

2. Related work 
Accelerometer based gait and activity analysis has been 

a popular research area since the pioneering work by 
Mantyjarvi et a!. a decade ago [20]. Early work used 
mUltiple motion sensors attached to human body parts to 
analyze their movements and bio kinematics. Later, data 
from a single sensor at a fixed position such as the feet, 
hips, or waist was also exploited [10]. With the 
proliferation of smart phones equipped with advanced 
sensors, there has been a surge of research interest on the 
use of accelerometers in commercial off-the-shelf (COTS) 
mobile devices for activity and gait classification [9] 
[11][17][26]. Unlike dedicated sensors used in earlier 

research, accelerometer signals in mobile devices are 
usually irregularly sampled at a relatively low frame rate 
for power conservation and efficient resource sharing. 

Commonly used 3-axis accelerometers capture 
accelerations along three orthogonal axes of the sensor. 
Given a multivariate time series of the acceleration data, 
feature vectors are usually extracted for signal windows 
corresponding to each detected gait cycle [7] [27] or for 
windows of a pre-specified size [17]. These windowed 
signals are compared and matched based on template 
matching [7], using either the correlation method or 
dynamic time warping. Alternatively, statistical features 
including mean, standard deviations, and time span 
between peaks in windows [17], histograms [17][20], 
entropy, higher order moments [10], and cumulants [26] in 
spatial domain are also used. FFT and wavelet coefficients 
[20][27] in frequency domains are also studied to compare 
longer sequences. Classifiers including nearest neighbor 
classifier, SVM [27], and Kohonen self-organizing maps 
[11] have been investigated. In some cases, preprocessing 
such as weighted moving average [7] is applied to 
suppress noise in the raw sensory data. 

Most existing researches are conducted in well 
controlled laboratory settings: there are strict constraints 
on where and how the sensors are placed to reduce 
variation and noise in the data. In some cases the sensors 

are placed in a specific way so that intuitive meanings can 
be assigned to the data components and be exploited for 
gain analysis. For example, [20] exploited a specific 
sensor placement to omit the left-right motion component, 
which is deemed less discriminative. 

For practical applications, it is unrealistic to assume 
fixed placement of the sensor. Mobile devices are often 
carried casually in pockets or hands without constraints in 
orientation. Since the same locomotion may result in 
completely different measurements with changing sensor 

orientation, it is essential to compute gait biometrics 
robust to sensor rotation for realistic scenarios. 

Magnitude sequences of accelerometer measurements 
have been popular in use due to their in variance to sensor 
orientation changes ([9] [22] [27]). However, using the 
univariate resultant series of the raw 3D multivariate series 
results in information loss and ambiguity artifacts 
undesirable for highly accurate gait biometrics. 

Mantyjarvi et al. [20] used both principal component 
analysis (PCA) and independent analysis (ICA) to 
discover "interesting directions" for computing gait 
features for activity analysis. Unfortunately, the 
underlying assumption of identical data distributions for 
both training and testing data are unlikely to hold for 
realistic applications. 

Iso et al. [12] approached this challenge by augmenting 
the training set with simulated data at multiple sensor 
orientations via artificially rotating available training data. 

In their approach, the significant artificial sampling 
needed to tessellate 3D rotational space creates an 
unbearable computational and storage burden with the 
additional risk of degraded classifier performance. In [16], 
orientation invariant features were extracted using the 
power spectrum of the time series. However, it suffered 
shortcomings common to frequency domain methods: loss 
of temporal locality and precision, and vulnerability to 
drifts in gait tempo. 

Sprager et al. [26] used a co-built-in gyroscope sensor 
to calibrate accelerometer data to the upright posture in 
order to reduce the influence of noise in sensor orientation. 
Their approach requires calibration prior to every data 
collection, expects the sensor not to rotate during data 
collection, relieves only noise in the vertical direction, and 
makes unrealistic assumptions that all poses are upright. 

These studies paint a picture of drastic degradation in 
gait recognition performance in more relaxed scenarios. 
Even with the new invariant features, accuracy of 
approximately 50% was reported in [16]. Accuracies 
between 27% and 63% were reported in [9]. On the other 
hand, accuracies in the high 90 percentages are often 
achieved in more controlled scenarios. Although each 
study used its own dataset and evaluation standards and 
the numbers are not directly comparable, the consistent 
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Figure 1. (a) x-, y-, and z- acceleration components from an accelerometer embedded in a mobile phone carried by a 
walking subject; (b) X-, y-, and z- rotation rate measurements from the embedded gyroscope. Both sensors capture 
distinguishing locomotion patterns characteristic of a person's gait. However, as the subject re-positioned the sensor (in 
the middle of the sequence), the captured gait patterns change drastically due to data dependency on sensor orientation�; 
(c) the corresponding gait dynamics image (GDI) feature representation for the raw acceleration sequence in (a); (d) the 
corresponding GDI for the raw gyro sequence in (b). The gravity component is removed from the acceleration time series 
before the computation of GDIs. The GDIs are invariant to sensor orientation and thus show much better consistency 
before and after the sensor re-positioning. 

large gap in performance does highlight the challenge for 

realistic gait biometrics using orientation-dependent 
motion sensors. For a mobile device based gait biometrics 
system to succeed in real world applications, it is crucial 
to address the variations in sensor orientation due to casual 
handling of mobile devices. 

3. Invariant gait representation 
One of the major challenges for mobile device based 

gait biometrics is the data dependency on sensor 
orientation. As shown in Figure I (a) and (b), the 
accelerometer and gyroscope measurement patterns 
collected using a mobile phone before and after a sensor 
rotation, differ drastically, making gait matching a 
challenging task. For realistic mobile gait biometrics, the 
device placement is casual and unconstrained. It is 
essential to extract features that are robust to the sensor 
rotation. 

We approach the challenge caused by variation in 
sensor orientation by exploring gait features that 
characterize the distinguishing locomotion signature while 
staying invariant to sensor orientation. We note that 
although the individual acceleration data does depend on 
sensor placement, it is possible to extract relationships 
between a pair of observations from one sensor that do 
not. Subsequently, we can compute features using these 

pairwise interactions inside each gait cycle to capture the 
gait dynamics, resulting in discriminative and robust 
representations for gait analysis. 

3.1. Orientation invariants for accelerometer data 

Given two 3D acceleration measurement vectors at 

times tl and t2, A(tJ' = [x(tl) y(tl) z(tl)]t and 

ACt;) = [x(t2) y(t2) z(t2W, by an accelerometer 
with reference frame OXYZ, assume these forces are also 
captured by a second accelerometer with a reference frame 

OX'Y'Z': A'(tl) = [x'(tl) y'(tl) z'(tIW 
and A'(t2) = [X'(t2) y'(t2) z'(t2)]t. Let the rotation 

between the two sensors be R. We have A'(t3 = 

RA(tI) and fi'(t;) = RA(t2). Although the raw 
acceleration readings depend on the sensor orientation, we 
are able to extract orientation invariant features using a 

pair of motion vectors at times tl andt2: 

< A '(t, ), A '(t,) > < RA(tl),RA(t,) > 

A(t,{ RT RA(tI) 
< A(tl), A(t,) > 

Eq.l 

We can thus define the inner product invariant to sensor 
rotation: 
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1inp (ACt1), A(tz)) = < A(t1), A(tz) > Eq.2 
This invariant quantity is related to the projection of one 

acceleration vector on the other, which stays the same 
regardless of the choice of the reference frame. In the 

special case when tl = tz, we have: 

< A(t),A(t) > = IIX(t)2 + y(t)2 + z(t)211, 
which is the commonly used magnitude series. 

From these invariants, we can derive additional 
invariant features with normalizing effects. Among them 

is the normalized cosine similarity measure: 

Eq.3 

Intuitively, this invariant is the cosine of the angle 
between two 3D acceleration vectors. It remains the same 
for all reference frames that are static with respect to each 
other. 

Rotation axis u 

Rotation angle 
e 

Figure 2. Alternative rotation representation. 

3.2. Orientation invariants for gyroscope data 

Gyroscopes measure the rotation (or rotation rate) 
about the sensor's axis, which is a different physical 
quantity from the linear accelerations measured by 
accelerometers. However, we can still extract orientation 
invariants from a pair of raw gyro sensory data using 
appropriate rotation representations. Instead of using 
rotation matrix or Euler angles, a 3D rotation (rate) at time 
t can alternatively be uniquely represented using a 3D 

rotation axis vector u(t) and a scalar rotation angle O(t) 
around the axis (Figure 2). With this rotation 

representation, the angle O(t) is invariant to the choice of 

reference coordinate system. The coordinates of rotation 

axis ii(t) , on the other hand, does depend on the choice of 

reference frame. Yet, we can extract reference invariant 

features using a pair of 3D rotation vectors ii (tl) and 

ii(t2) obtained at time tl and t2 as follows: 

Eq.4 
< u(tJ), U(t2) > 

In other word, although the rotation (or rotation rate) axes 
depend on the sensor orientation, the inner product 
between a pair of the 3D rotation axis vectors does not. 

This invariant quantity is related to the angle between the 
two axes, which stays the same regardless of the choice of 
the reference frame. 

For 3-axis rate gyroscopes, let 

WCt5 = [wx(t) wy(t) wz(t)F be the output of 

measured rotation rate about the x-, y-, z- axes expressed 
in rad/s. According to the theory on Direction Cosine 
Matrix IMU [24], for a small time dt, the combination of 
three small rotations about the X-, y-, z-axes characterized 

by angular rotation vectors WJJ5, wy(t), WJt) , 
where wx(t) = [wx(t) 0 of, 
wy(t) = [0 wy(t) of, Wz(t) = [0 0 wz(t)F, is 

approximately equivalent to one small simultaneous 

rotation characterized by angular rotation vector WCt5 = 

[wx(t) wy(t) wz(t)F, which is a rotation around the 

axis defined by [wx(t) wy(t) wz(t)F, with an angle 

equal to the magnitude II[wx(t) wy(t) wz(t)FII. 
From previous discussion, we have established that the 

magnitude of wet) , which is the rotation angle around 
the 3D rotation axis, is invariant to the sensor axis, and the 

inner product of a pair of wet) is also invariant to the 
sensor reference frame. Consequently, we can compute 
invariant features for a pair of angular rate readings 

w(t1) = [WX(t1) 
[wx(tz) wy(tz) 

T ------> 
wy(t1) wzCt1)] and w(tz) = 

wz(tz)F from gyroscopes: 

1inpCtv tz) = < W(t1), w(tz) > Eq.5 
In the special case when t1 = tz, we have 

1inp(t,t) = < w(t),w(t) > = I lw(t) ll. 
We also extract normalized cosine similarity invariants: 

1 (t t )  - <W(tJ,�> nc 1, Z - llw(t1) ll llw(tz) 11 
3.3. Gait dynamics images 

Eq.6 

We exploit these invariant motion interactions to extract 
features that characterize the locomotion dynamics and 
which are robust to variations in sensor orientation. Given 

a 3D acceleration or rotation rate time series of size n 
sampled at regular time intervals 

{A(1),A(2),A(3), ... ,A(n - l),A(n)}, we define a two 
dimensional matrix which we call Gait Dynamics Image 
(GDI) to capture invariant motion dynamics over time and 
interactions within each gait cycle. Let the invariant 
feature computed using data vectors 

A(tJ' and A(tJ' be l(tv tz), using either Eq. 2 or Eq. 3 
for acceleration measurements, and Eq. 5 or Eq. 6 for 
rotation measurements. The GDI is defined as follows: 

GD1(i,j) = 1U, i + j - 1), Eq.7 
i = 1, ... , land j = 1, ... , n - l + 1, 
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Figure 3. Gait dynamics images exhibit good intra-subject consistency and notable inter-subject distinctions despite of 
sensor orientation variations, 

where l is the range of the time delay for concerning 
pairwise motion interactions, for which we choose to 
encode context within a typical gait cycle, 

Gait Dynamics Images encode rich dynamics and 
context information characterizing the unique gait of an 

individuaL The ith row of the GDI contains all pairwise 

interactions of time delay i-lover time, while the jth 
column consists of interactions between the motion at time 

j and all its successors up to time lag l - 1 to capture 
local context In particular, the first row of the inner 
product GDI (Inp GDI) image, which are the inner 

products of observation pairs with time lag 0, corresponds 
to the magnitude sequence, The magnitude sequence has 

been shown to be advantageous to the raw component 
acceleration features in cell phone based gait ID studies 
[27], and has been often used in existing research to 
handle the variations in sensor placement The remaining 
rows contain the interactions at varying time lags that 
contribute to additional discriminating information of gait 
dynamics. This makes GDIs extremely powerful 
representations for gait biometrics. 

The cosine similarity GDIs (NC GDI) can be 
considered a normalized form of the inner product GDIs 
by taking out the effects of the magnitudes. These GDIs 
only depend on the angles between the observation 
vectors. This normalization may improve the robustness to 
noisy magnitudes in the data. In summary, the GDI, 
although built on the sensor rotation dependent raw 
acceleration measurements, achieves a view invariant 
representation of the governing dynamics in the original 
multivariate time series for robust gait analysis, 
Furthermore, it preserves the local interactions and 
contextual information within each gait cycle essential for 
discriminative motion analysis to enable highly accurate 
gait biometrics. We show in Figure 1 (c) and (d) the 
corresponding cosine similarity GDIs for the raw 
acceleration measurements in (a) and rotation rate 
measurements in (b). As expected, the GDIs exhibit much 

better consistencies between the two collections than the 
raw time series. We show in Figure 3 the cosine similarity 
GDIs for three subjects from two sessions. As one can see, 
GDIs exhibit good intra-subject consistency and notable 
inter-subject distinctions despite of sensor orientation 
variations. 

In addition to invariance to sensor orientation changes, 
GDIs are also invariant to symmetry transform or any 
concatenation of symmetry and rotation transforms in the 
motion measurements. This is apparent as both Eq. 1 and 
Eq. 4 hold if we replace the rotation matrix R with any 
symmetry transform matrix or concatenations of rotation 
and symmetry transforms. As the laterally symmetric 

human anatomy typically creates symmetric locomotion 
for the left and right sides of the body, it is possible to 
match GDIs from a phone placed in one pocket to GDIs 
from phones in the opposite side pocket, thus further ease 
the sensor placement constraint 

GDIs encode both dynamics for the time series and the 
local interactions. Given the irregular periodic input 
locomotion time series, gait dynamics images also display 
quasi-periodicity in both the time and time lag domains 
with the period approximating the length of a gait cycle. 

As shown in Figure 3, these GDI images, when the time 
lag coincides with the length of the local gait cycle, the 
GDI features have high values as signals repeat 
themselves. This is reflected by horizontal lines of high 
similarity measurements in both GDIs, starting with the 
first row, repeating at the length of a gait cycle. Gait 
cycles can be estimated by fitting smooth horizontal 
curves across the image which maximizes the overall 
intensities. Due to the quasi-periodic nature of gait and the 

repetitive pattern in GDIs, we set I to be a little more than 
the length of average gait cycles to preserve all contexts 
within a gait cycle when computing GDIs. 
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4. Gait classification using GDIs and I-vector 
We adopt the i-vector model that is commonly used for 

speaker verification to classify GDIs for gait biometrics. 
Despite their different application domains, voice 
biometrics and gait biometrics are similar in nature as both 
needs to extract subject specific signatures from sensory 
data corrupted with variations from various irrelevant 
sources. The identity vector (i-vector) extraction method 
using total variability factor analysis [5] provides an 
appealing solution to gait identity extraction using GDIs. 

In the following we outline the i-vector extraction 
procedure. Interested readers should refer to [5] for more 
details. The i-vector modeling for user authentication 
consists of three major steps: 

1. Build a universal background model (UBM) using a 
Gaussian mixture model (GMM) by pooling all or a 
subset of the feature vectors from the training data set. 
Note that the raw GDI features are enhanced with 
additional delta GDI features, just like delta speech 
features used in speaker recognition. 

2. Given the trained UBM (D), we compute a 
supervector for each enrollment or authentication gait 

GDI feature sequence of L frames {Yll YZI ... I yd, 
where each frame is a feature vector of dimension F: 
a. the posterior probability (Nc) and Baum-Welch 

statistics (Pc) for each Gaussian component are 
computed as: 

Ne = L�=l PCcl Ytl D) and 

Pc = n=l pCcl Yt, D)(Yt - me) , 

where me is mean vector for Gaussian 
component c. 

b. The supervector M is obtained by concatenating 

Pc for all Gaussian components to form a vector 

of fixed dimension C . F for an input sequence of 
arbitrary length L. 

3. Conduct factor analysis in the supervector space using 
a simplified linear model: 

M=m + Tw 

where m is a subject independent component, T is a 
low rank rectangular matrix, and w is the i-vector. The 
training process learns the total variability matrix T 
and a residue variability covariance matrix 2. The i­
vector is then computed as: 

w = (I + Tt E-1 NTrlTt E-1 M , 
where N is a diagonal matrix consisting of diagonal 

blocks of NJ 

Once an i-vector is extracted for each gait sequence, the 
similarity between two gait sequences is then computed as 
the cosine distance between their corresponding i-vectors: 

C ) <WloWZ> d W11 Wz = IIW111 11wzil 

5. Performance analysis 
We have conducted performance analysis of our gait 

biometrics algorithm using two publicly available gait 
biometrics datasets. 

5.1. McGill University naturalistic gait dataset 

The goal of this experiment is to investigate the 
effectiveness of GDIs for robust gait biometrics. We used 
the real-world dataset for gait recognition from McGill 

University [8] due to its analogy to realistic gait 

biometrics using mobile devices. Data were collected 
using HTC Nexus One phones on two different days with 
little constraint on the placement of the phone except that 
it was put in a pocket on the same side of a subject during 
the two data collections. 

We extract GDIs corresponding to 50 seconds of raw 
signals with a time lapse of up to 1.2 seconds. A simple 
correlation based classification method is used to assess 
the effectiveness of the GDI representations. The 
similarity between two gait sequences is computed by 
aggregating peak correlation coefficients between GDI 
windows of 2.4 seconds. Nearest neighbor classifier is 
used. We compare the recognition accuracy using the 
GDIs to a baseline using only the magnitude series (which 
is the first row of the inner product GDI) because of its 
popularity in existing studies and superior performance to 
other features [27]. Two scenarios: 1) training and testing 
using non-overlapping data collected on the same day, and 
2) training and testing using data from separate days, are 
examined. Obviously the latter is more challenging as the 
attires, carried loads, shoes, and most importantly the 
phone placements are all subjected to change, in addition 
to the variations in the same-day scenario. 

Approach Identification accuracies 

Same day Separate days 

M�nitude (baseline) 67.5% 32.5% 

Inp GDI 87.5% 61.3% 

NC GDI 85.0% 66.3% 

Table 1. Gait ID accuracy on the McGill University gait 
dataset using Gait Dynamics Images. 

Table 1 shows the accuracies for the gait identification 
algorithms. Although both the magnitude series and GDIs 
are robust to orientation variations, GDIs contain much 
more information on context and interactions in gait 
cycles, allowing them to offer powerful discrimination and 
perform significantly better than the magnitude features. 
This advantage is even more drastic for the challenging 
separate-day scenario with more variations, where we 
obtain an accuracy of 66.3% - more than doubling the 
accuracy using magnitude features. Though all methods 
performed worse for the separate-day scenario, the 
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methods using GDIs degraded much more gracefully 
thanks to their rich discriminating gait dynamics. 

5.2. Osaka U Diversity largest gait dataset 

The McGill dataset is a realistic dataset. However, it 
only includes accelerometer data with 20 subjects. We 
thus conducted experiments on the largest publicly 
available gait dataset - the Osaka Univ. dataset [21] which 
consists of 744 subjects with both gyroscope and 
accelerometer data. In this dataset, each subject has two 

walking sequences- one for training and one for testing. 

We apply the i-vector technology to the GDI feature 
sequence for gait authentication. The UBM was modeled 
by a GMM of 800 components and the [mal i-vector was 
60 and 40 dimensions for the accelerometer and the 
gyroscope modality, respectively. The authentication was 
based on the cosine similarity of i-vectors. We conducted 
exhaustive 744x744 authentication tests using the i-vector 
modeling tool in [23]. In addition, we further reduce the 
equal error rates (EERs) by sensor fusion using the 
average score from the two modalities. The authentication 
results are plotted in Figure 4. The normalization effect in 
cosine similarity GDIs appears to be beneficial as they 
outperform inner product GDIs for both sensor modalities 
and also for the fusion case. 

a:: c:::: 0.15 u.. 
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Figure 4. I-vector gait authentication results on the 744-
subject Osaka University gait dataset, using inner product 
GDIs (Inp) and cosine similarity GDIs (NC) from 
accelerometer, gyroscope and sensor fusion. 

We also compare the performances of the proposed 
algorithms to four existing gait authentication algorithms. 
As shown in Table 2, our novel GDI+i-vector approach to 
gait authentication has resulted in significant lower EERs, 
compared with recently published results on the same 
data set of 744 subjects, using the same training and 
testing subsets. 

Sensor modality 

Approach Acce. Gyro. Fused 

Gafurov et al. [II] IS.8LLIJ NA NA 

Derawi et al. [7] 14.3L21J NA NA 

Liu et al. [19] 14.3LL1J NA NA 

Ngo et al [21] 13.SL21J 20.2l21J NA 

Inp GDI + i-vector 8.9 11.3 7.1 

NC GDI + i-vector 6.8 10.9 5.6 

Table 2. Gait authentication performance (EER in %) on 

the Osaka Univ. gait dataset containing 744 subjects. We 
compare EERs the proposed algorithm (bottom two rows: 
using inner product GDIs (Inp GDI) and cosine similarity 
GDIs (NC GDI) combined with i-vector modeling) with 
those of four published algorithms (Top four rows, as 
reported in [21], Table 2) using the same dataset. 

6. Conclusions and future work 
We have proposed a novel invariant gait representation 

called gait dynamics images for accelerometer and 
gyroscope sensory data. On the one hand, GDIs are robust 
to variations in sensor orientation. GDIs are also invariant 
to symmetry transforms of the motion measurements. As 
the bilateral symmetry in human bodies often result in 
symmetric locomotion for the left and right side of the 
body, it is possible to match GDIs computed using a 
device placed in one pocket to GDIs computed from a 

device carried in a corresponding pocket on the other side. 
These invariant properties of GDIs greatly relax the sensor 
placement restrictions for realistic mobile gait biometrics. 
On the other hand, GDIs are highly informative and 
discriminative by encoding fine scale intrinsic interactions 
and complex dynamics within gait cycles to enable high 
performance gait authentication for a large user 
population. With these two advancements combined, GDIs 
offer mobile device users a promising gait representation 
allowing for robust and accurate gait biometrics in their 
daily lives. 

We have applied the i-vector approach, commonly used 
in speaker recognition to recover identity information 
from noisy voice signals, to extract gait identity using 
GDIs. Gait biometrics performance studies on both the 
McGill Univ. gait dataset and the Osaka Univ. gait dataset 
have shown the advantages and superiority of our 
approach compared to existing gait biometrics algorithms. 

The major challenge for mobile gait biometrics is to 
ensure that they work reliably in an unconstrained 
environment, just as for other biometrics modalities 
including face recognition, fingerprinting, iris recognition, 
and voice identification [14]. An imperative need is to 
overcome the data dependency on sensor placement. 
Inertial sensors in phones capture local motion when worn 
on the body. These motion patterns are likely different 
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when the phones are carried in separate pockets. Even 
when the phone is placed at the same location, the motion 
measurements differ depending on the orientation of the 
phone. GDIs provide invariant gait representation for 
sensors placed at approximately the same location, 
regardless of orientation. Their invariance to symmetry 
transforms (and concatenations of rotation transforms and 
symmetry transforms) also allows for consistent signature 
extraction when the device is placed in either one of two 
laterally symmetric pockets. The proposed work moves 
gait biometrics one step forward from existing laboratory 

studies towards more widespread and casual use in 
people's daily lives. However, we have yet to address 
motion variations caused by location differences that are 
not laterally symmetric. We will explore comprehensive 
training and advanced machine learning algorithms such 
as manifold learning or knowledge transfer to further 
improve the accuracy of gait biometrics. 
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