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We introduce the notion of de Bruijn entropy of an Eulerian quiver and show how the correspond-
ing relative entropy can be applied to practical word similarity problems. This approach explicitly
links the combinatorial and information-theoretical properties of words and its performance is com-
petitive with, if not superior to, edit distances in many respects. The computational complexity of
our current implementation is parametrically tunable between linear and cubic, and we outline how
an optimized linear algebra subroutine can reduce the cubic complexity to approximately linear.
Numerous examples are provided, including a realistic application to molecular phylogenetics.

I. INTRODUCTION

Word (or string) similarity is a fundamental problem touching on computer science, bioinformatics, machine learn-
ing, and many other areas [23]. Most fast approaches to word similarity (e.g., bag-of-words or kernel methods) are
heuristic, whereas most theoretically grounded approaches to word similarity (e.g., Kolmogorov complexity methods)
are slow. In this paper, we discuss a technique that bridges the gap, offering performance that can be tuned between
linear and (in a sufficiently optimized implementation) subquadratic time while offering a clear interpretation in terms
of combinatorial and information-theoretical primitives. Our technique is particularly well suited for comparing words
based on their local structure and is agnostic to global structure, which is particularly interesting for comparing words
encoding paths through digraphs with cycles (e.g., control flow graphs of computer programs) or for streaming data.

The paper is structured as follows. We begin by establishing notation and graph constructions in §II before dis-
cussing basic combinatorial properties in §III and our ultimate information-theoretical considerations in §IV. Finally,
we outline applications, focusing in particular on molecular phylogeny as an example where an approximate “ground
truth” furnishes a basis for evaluating the performance of our approach and its comparison with conventional tech-
niques. Appendices on spin models as well as code for reproducing and extending our results are included.

II. PRELIMINARIES

We begin with some preliminaries to establish basic definitions and notation. Let n < ∞ and consider a finite set
A := {a1, . . . , an} which we call an alphabet. A word over A of length ` is an element of A`; a symbol is a word of
length 1. The word w = (w1, . . . , w`) will typically be written as w = w1 . . . w`. The concatenation of two words
w = w1 . . . w` and w′ = w′1 . . . w

′
`′ is ww′ := w1 . . . w`w

′
1 . . . w

′
`′ . The empty word ε ∈ A0 ≡ ∅ is the identity element

in the free monoid A∗ (a/k/a the Kleene closure of A) generated by A under concatenation. Note that A∗ consists
of ε and all the finite words over A. The unique monoid homomorphism from A∗ to (N,+) sending each element of
A to 1 gives the length of a word: accordingly, we write the word length homomorphism as ` : A∗ → N without fear
of confusion, e.g., `(w) = `.

A cyclic word (a/k/a necklace [28]) of length ` is an element of A`/ ∼◦, where w ∼◦ w′ iff there exists a cyclic
permutation σ ∈ S` s.t. w′j = wσ(j) for 1 ≤ j ≤ `. That is, a cyclic word is the set of cyclic shifts of a word. We shall
engage in a minor abuse of notation by letting w denote either a word or a cyclic word depending on context. If w is
cyclic, wj := w((j−1) mod `)+1.

Recall that a quiver (a/k/a multidigraph, directed multigraph, etc.) Q is an ordered pair (V (Q), E(Q)) ≡ (V,E)
s.t. E is a multiset over V × V [5]. In this paper we shall always assume that V is finite. The adjacency matrix
A(Q) of Q is defined so that if there are a edges from vj to vk, then A(Q)jk := a. It is clear that a quiver may be
reconstructed from its adjacency matrix and vice versa, so that we may write f(Q) ≡ f(A) without any ambiguity
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so long as either side is defined. Furthermore, we may make the implicit identifications vj ≡ j and Q ≡ A(Q) for
convenience.

Let w be cyclic and fix 0 ≤ k < `(w). The order k de Bruijn quiver Qk(w) is defined as follows:

• V (Qk(w)) := Ak;

• E(Qk(w)) := {(w1+j . . . wk+j , w2+j . . . wk+1+j) : 0 ≤ j < `}.

That is, the edges of Qk(w) correspond to the subwords of length (k+1) (a/k/a (k+1)-grams) of w, with multiplicities
counted. An example is shown in figure 1.

A

AG@3

��

AT@1

��

C

CA@6

xx
A

AG@1

��

AT@4

��

C

CA@6

xx

G

GT@4

88 TTA@2

ZZ

TC@5

^^

G

GT@2

88 TTA@3

ZZ

TC@5

^^

FIG. 1: The cyclic words ATAGTC (L) and AGTATC (R) have identical order 1 de Bruijn quivers and (equivalently) the same
2-grams over the alphabet {A,C,G, T}. The quiver edges are annotated with wjwj+1@j and colored in order of increasing j
from red to blue. The last (blue) edge is dashed to indicate that its removal corresponds to considering a quiver for an acyclic
word in the obvious way.

Remarks.

• The order 0 de Bruijn quiver of a word w has the single vertex ε and edges corresponding to each symbol in w,
with multiplicity.

• If w is a n-ary de Bruijn sequence of length nk, then Qk−1(w) is the n-ary de Bruijn graph with nk edges.

• Qk(w) is Eulerian (i.e., [strongly] connected and with indegrees equal to outdegrees, so that we may unambigu-
ously write deg(v) for either quantity at vertex v) iff w contains every possible (k + 1)-gram (otherwise, there
are isolated vertices, but we may elide this technicality without comment at times). An Euler circuit on Qk(w)
corresponds to a Hamiltonian path on Qk+1(w). These properties are why we deal with cyclic words.

III. COMBINATORICS

To begin this section, we remark that it is a concrete application (though perhaps of sufficient generality as to
border on a reformulation) of the so-called transfer matrix method [28].

Write w ∼k w′ iff Qk(w) = Qk(w′). It is clear that ∼k is an equivalence relation; denote the corresponding
equivalence class of w by [w]k. Let Wk(w) := |[w]k| denote the number of cyclic words with the same order k de
Bruijn quiver as w. In order to compute Wk(w) it is necessary to consider the adjacency matrix Ak(w) ≡ A(Qk(w)).

If A is a square matrix, write d(A) for the vector with components given by the diagonal entries of A; similarly,
write d(x) for the diagonal matrix with diagonal entries given by the components of x. Note that since d(d(x)) = x
this is hardly an abuse of notation. If now 1 denotes a vector of ones, then L(A) := d(A1)−A is the Laplacian of A.
We recall the following two classical theorems:

Matrix-tree theorem. Let Q be a quiver. The diagonal cofactors of L(A(Q)) are all equal to each other and to
the number t(Q) of directed spanning trees of Q oriented towards any fixed vertex. �

BEST [de Bruijn, van Aardenne-Ehrenfest, Smith, and Tutte] theorem. Let Q be an Eulerian quiver.
Then the number c(Q) of Euler circuits of Q is

c(Q) = t(Q) ·
∏

v∈V (Q)

(deg(v)− 1)!. � (1)
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These readily yield the following

Corollary. [11, 13] Let A := Ak(w) correspond to an Eulerian de Bruijn quiver. Then

Wk(w) = W (A) :=
∑

d| gcd(A)

φ(d) · c(A/d)

d · (A/d)!
. (2)

Here φ(·) is the totient function, the gcd is defined elementwise and M ! :=
∏
i,jMij !. The d = 1 term dominates,

giving the simple and effective approximation W (A) ≈ c(A)/A!. We note that if Q is an Eulerian (not necessarily de
Bruijn) quiver with adjacency matrix A, then we may still write W (A) or W (Q) for the RHS of (2). However, it is
not necessary to directly interpret W in this more abstract context, since any finite Eulerian quiver can be embedded
in some de Bruijn quiver.

Sketch of proof. The factor c(A/d) gives the number of labeled “divisor-Euler circuits” with the commensurate
length; (A/d)! accounts for removing the labels. The d factor in the denominator accounts for the concatenation of
divisor-Euler circuits into an actual Euler circuit. Finally, the factor of φ(d) accounts for inequivalent shifts amongst
the various divisor-Euler circuits. �

A. Example 1

Consider w = ABRACADABRA over A = {A,B,C,D,R}. Q1(w) and Q2(w) are depicted in figure 2.
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FIG. 2: (L) Q1(w). (R) Q2(w).

We have that

A1(w) =


1AA 2AB 1AC 1AD 0AR
0BA 0BB 0BC 0BD 2BR
1CA 0CB 0CC 0CD 0CR
1DA 0DB 0DC 0DD 0DR
2RA 0RB 0RC 0RD 0RR

 (3)

where for convenience we have annotated matrix entries with subscripts corresponding to the 2-grams. It is easy
to check that t(Q1(w)) = 4. Meanwhile, the ordered tuple of vertex degrees (i.e., the row or column sums of A) is
(5, 2, 1, 1, 2), so

∏
v(deg(v) − 1)! = 24. Therefore c(Q1(w)) = 4 · 24 = 96. The sum in equation (2) has only a single

term, corresponding to d = 1, and so W1(w) = (φ(1) · 96)/(1 · (2!)3 · (1!)5 · (0!)17) = 96/8 = 12. [36] By noting the
cycle structure of Q1(w), we can list the 12 elements of [w]1 by hand. In the lexicographical order inherited from the
usual order on A, these are:
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1 A B R A B R A C A D A
2 A B R A B R A D A C A
3 A B R A C A B R A D A
4 A B R A C A D A B R A
5 A B R A D A B R A C A
6 A B R A D A C A B R A
7 A C A B R A B R A D A
8 A C A B R A D A B R A
9 A C A D A B R A B R A
10 A D A B R A B R A C A
11 A D A B R A C A B R A
12 A D A C A B R A B R A

It is not difficult to similarly show that W2(w) = 1.
Finally, consider w′ = BARBARA. This is a degenerate case as the symbols C and D are not present, so that the

de Bruijn quiver is only componentwise Eulerian: i.e., the in- and outdegrees coincide, but some are zero, so that the
quiver is not connected. Taking A′ = {A,B,R} (or equivalently and perhaps more straightforwardly, modifying the
Laplacian by changing any zeros along the diagonal to ones) to remedy this, we get that t(Q1(w′)) = 4. The ordered
tuple of vertex degrees is (3, 2, 2), so

∏
v(deg(v)− 1)! = 2 and c(Q1(w′)) = 2 · 4 = 8. As before, there is a single term

in the sum for W1(w′) = (φ(1) · 8)/(1 · (2!)2 · (1!)3 · (0!)4) = 2. The other element of [w′]1 is BARARBA. �

B. Example 2

Consider A = {0, 1}, k = 1, and fix `. If g ∈ {00, 01, 10, 11}, let xg(w) be the number of times that g occurs
in w. Because w is cyclic, we must have x01 = x10 = (` − x00 − x11)/2 =: x∗, and A1(w) = ( x00 x∗

x∗ x11
). We

have that L(A1(w)) = x∗
(

1 −1
−1 1

)
, so t(Q1(w)) = x∗. Furthermore, deg(0) = x00 + x∗ and deg(1) = x∗ + x11, so

c(Q1(w)) = x∗ · (x00 + x∗ − 1)! · (x∗ + x11 − 1)!. It follows after a line or two of algebra that

W1(w) ≡W1(x00, x∗; `) =
x∗

(x00 + x∗)(x∗ + x11)
·

∑
d| gcd(x00,x11,x∗)

φ(d) ·
(

(x00 + x∗)/d

x∗/d

)(
(x∗ + x11)/d

x∗/d

)
. (4)

Explicitly, for ` = 16, we have the following table of values, with zeros omitted: [37]

x00

x∗

W1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 7 12 17 20 23 24 25 24 23 20 17 12 7

3 22 55 90 120 140 147 140 120 90 55 22

4 43 120 212 280 309 280 212 120 43

5 42 126 210 245 210 126 42

6 22 56 75 56 22

7 4 7 4

8 1

Summing over the table entries shows that there are 4116 distinct cyclic binary words of length 16, a fact which can
be confirmed via the Burnside-Frobenius lemma.

Figure 3 shows results in the same vein for ` = 256. It is evident that W1 behaves very much like a Gaussian, with
the only significant qualitative difference resulting from the triangular domain. Similar results hold for more general
contexts, and this fact might enable analytical estimates for W (A). �
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FIG. 3: (L) Contour plot of H1 := log2 W1 for ` = 256. Inset: plot of H1 values intermittently sampled along the dotted line
and comparison to a naive quadratic fit. Samples along horizontal lines behave similarly. (R) Black countours: plot of H1 after
the horizontal transformation x00 7→ (1 + x∗

`/2−x∗
) ·x00. Red contours: naive quadratic fit. Inset: plot of transformed H1 values

intermittently sampled along the line x∗ = `/4 and comparison to a naive quadratic fit. Note that the naive quadratic fit is a
slight overestimate at the peak.

IV. INFORMATION THEORY

A. de Bruijn entropy

Definition. The order k de Bruijn entropy of a cyclic word w is Hk(w) := logWk(w).

As in §III, we may also consider the entropy of an Eulerian quiver Q or of its adjacency matrix A, written respectively
H(Q) and H(A). Typically the logarithm will be taken with base |A| unless otherwise indicated. This definition
evokes Boltzmann’s physical interpretation of entropy as the logarithm of the number of microscopic configurations of
a system that are consistent with the system’s macroscopic characterization. Here, the “macroscopic characterization”
of w is just Qk(w), and “microscopic configurations” of w are just members of [w]k.

1. Compression arguments

Recall now the context of §III B. In order to completely specify a cyclic binary word w, it suffices to specify both

• A1(w), which requires a total of 2dlog2 `e−1 bits (because it requires dlog2 `e bits to specify x00 and dlog2 `e−1
bits to specify x∗);

• The appropriate element of [w]1, which requires at most dH1(w)e / ` − log2 ` bits (because there are roughly
`−12` cyclic binary words of length `).

In particular, if H1(w) < ` − 2 log2 ` + 1, then we have the outline of a scheme for losslessly compressing w (the
generalizations to n > 2 and k > 1 are not fundamentally different). Note that while most words are too statistically
uniform (or more precisely, the adjacency matrices of their de Bruijn quivers have elements that are too similar) to
be compressed in this way, in practice one is rarely interested in compressing statistically uniform data. Indeed, we
recall that a standard diagonal argument shows that any fixed compression scheme will fail to compress most data
[17].

2. Maximally informative values of k

Although the paper [26] leverages the empirical probability distribution of k-tuples rather than the more detailed
notion of de Bruijn quivers, it nevertheless gives strong experimental evidence that the natural heuristic k = blogn `c
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is a good approximation for the lower limit of a reasonably narrow range of maximally informative values of k in
practice. While this paper also discusses upper limits on this range, these depend on the particular word and are of
less practical interest for the obvious reason that increasing k requires more storage.

3. Remarks on computational complexity

A detailed analysis of the complexity of computing the de Bruijn entropy is likely to be both more intricate and
less informative than an experimental one, owing to the complex relationship between the local statistical behavior
of words and their corresponding quiver connectivity structure as a function of k (this is particularly true for the
relative de Bruijn entropy, for which see below). However, we note that the dominant contribution to runtime is a
matrix determinant (note that forming the adjacency matrices of quivers of words can be done in linear time), and
we briefly discuss its complexity here.

Let ω denote the exponent for the complexity of matrix multiplication/inversion/determinant evaluation (say, 3 or
perhaps 2.808 in practice, or 2.373 in theory [29]). Now O((nk)ω) = O(`) ⇐⇒ k = ω−1 logn `+O(1) determines k s.t.
computing the de Bruijn entropy requires linear time with standard techniques of linear algebra (e.g., computing the
determinant via LU or QR decomposition as in our current implementation). Meanwhile, as pointed out in §IV A 2,
a reasonable rule of thumb for the maximally informative value of k is blogn `c.

These two observations can be combined by thinking of k as a scale below which where we have complete information
about the structure of words and of `1/ω as a scale above which negligible information suitable for comparisons between
words is discernable in linear time using standard techniques of linear algebra. That is, the computation of a de Bruijn
entropy can be forced to run in linear time by choosing k = bω−1 logn `c (or, for that matter, k = O(1)), with the
consequence that this amounts to neglecting not only correlations at scales greater than k (as usual), but also the
ability to capture statistical fluctuations of any sort at scales beyond `1/ω. Insisting on k = blogn `c means in practical
terms that our technique requires cubic time in the implementation used here.

However, it is possible to do better, though for the sake of keeping this paper reasonably circumscribed we will
confine ourselves here to a brief discussion. The reader will probably have noticed the phrase “standard techniques
of linear algebra” repeated above, and considered the associated references to matrix decompositions for computing a
determinant in (what is in practice) cubic time. In fact the determinant can be evaluated in less than O((nk)ω) time:
it can be done in O((nk)2) or even O((nk) log2(nk)) time using so-called black box linear algebra [30, 32]. The key

here is that a diagonal minor L̂ of the Laplacian has a predetermined sparse structure, so that the oracle x 7→ L̂x can
be realized in subquadratic time. This faciliates the computation of the characteristic polynomial of L̂ using so-called
superfast Toeplitz solvers in O((nk) log2(nk)) time [1, 4], from which the determinant follows trivially. [38]

Thus although our current implementation essentially has cubic time complexity for maximally informative values
of k, it can already be regarded as having linear complexity for k independent of `, and a sufficiently optimized
linear algebra subroutine would yield complexity that is just the product of a linear and a polylogarithmic term in
the general regime of interest, rendering it competitive with bag-of-words or kernel methods [23] that have linear
complexity but weaker or more ad hoc theoretical justification.

B. Entropy of componentwise Eulerian quivers and relative de Bruijn entropy

Write

A�A′ := (A−A′) ∨ 0 + (A′ −A)∗ ∨ 0, (5)

where the maxima are taken elementwise. It is easy to see that if A and A′ both correspond to componentwise
Eulerian quivers, then so does A� A′. Indeed, this is the adjacency matrix of the quiver that naturally corresponds
to A−A′ after reversing edges with negative matrix entries. [39]

With this in mind, let A(j) be adjacency matrices respectively corresponding to Eulerian quivers Q(j), so that
Q :=

⋃
j Q

(j) is a componentwise Eulerian quiver with corresponding adjacency matrix A. Define

W (A) :=
∏
j

W (A(j)) (6)

and

H(A) := logW (A) =
∑
j

H(A(j)). (7)
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To avoid degeneracies, we define W (a) ≡ 1 and H(a) ≡ 0, where here a is the 1× 1 adjacency matrix corresponding
to the quiver Γa with a single vertex and a ≥ 0 edges (i.e., loops). Note that H(A) = H(A∗) and (A�A′)∗ = A′�A,
so that H(A�A′) = H(A′ �A).

Suppose now that we have two cyclic words w and w′ over A. Given w and therefore also Ak(w), all that is needed
to determine Ak(w′) is the difference Ak(w′)−Ak(w), or equivalently the two nonnegative matrices

Ak(w|w′) := [Ak(w)−Ak(w′)] ∨ 0; (8)

Ak(w′|w) := [Ak(w′)−Ak(w)] ∨ 0. (9)

In order to completely specify w′ given w, it therefore suffices to specify Ak(w|w′), Ak(w′|w), and a number of roughly
Hk(w′) bits. It is clear that Hk+1(w′) ≤ Hk(w′). If w′ is far from statistically uniform, then there will be some critical
value k << `(w′) s.t. Hk(w′) = 0 (note that H`(w′)−1(w′) ≡ 0). At this point all the information in w′ that is not
latent in w is encoded in the matrices Ak(w|w′) and Ak(w′|w). In other words, the conditional Kolmogorov complexity
K(w′|w) as well as the information distance [2, 16] can be approximated by a function of these matrices. [40]

This motivates the following

Definition. The order k relative de Bruijn entropy of w′ given w is Hk(w′||w) := H(Ak(w,w′)), where
Ak(w,w′) := Ak(w) � Ak(w′) = Ak(w|w′) + A∗k(w′|w). More generally, the relative entropy of A′ given A is de-
fined as H(A′||A) := H(A′ �A).

Note that (unlike the Kullback-Leiber incarnation of relative entropy for probability distributions) the relative
entropy of componentwise Eulerian quivers is symmetric. Our experiments have shown that it is however not a
pseudometric: i.e., it does not satisfy the triangle inequality. Nevertheless, it is straightforward to use the relative
entropy to derive a pseudometric on a fixed set of words using the results of [6].

1. Example 3

Setting u := ABRACADABRA and v := ABARACARBAD, we have that A1(u) � A1(v) = A1(w), where
w := ABRABRABRA and H1(w) = 0, so H1(u||v) = 0. [41] Meanwhile, the (Levenshtein) edit distance between
u and v turns out to equal 5. It is evident at least in this particular case that the relative entropy better captures
similarity in the local structure of words than an edit distance does.

2. Example 4

For 1 < m ∈ N, let w := 0m`1m` and w′ := (0`1`)m. For k < `, a straightforward (if somewhat tedious) calculation
shows that Hk(w||w′) . m logmk, whereas the (Levenshtein) edit distance between w and w′ is 2bm/2c`. That is,
for k and m fixed we have that Hk(w||w′) = O(1), whereas the corresponding edit distance is O(`).

3. Example 5

Figure 4 depicts the relative entropy H1(w′||w) of cyclic binary words w,w′ ∈ {0, 1}`/ ∼◦ as a function of x′00 and
x′∗, where ` = 256, x00 = 32, and x∗ = 80.

The relative entropy is zero along the strip |x′∗ − x∗| ≤ 1 (and nowhere else). This is because in the strip, A1(w)�
A1(w′) corresponds to coherently inserting and/or deleting only cyclic subwords of the form w(1) = 0 . . . 0, w(2) = 01,
and w(3) = 1 . . . 1. While there are generally many ways to do this, the cyclic subword w(1)w(2)w(3) = 0 . . . 01 . . . 1
satisfies H1(w(1)w(2)w(3)) = 0. This in turn is a manifestation of the simple cycle structure of A1(w)�A1(w′) in the
strip.

The cycle structure of A1(w) � A1(w′) is also behind the more significant phenomenon of relative entropy values
exceeding `(w) ∨ `(w′). This highlights the constraint that any modified relative de Bruijn entropies of the form
H(f(Ak(w), Ak(w′))) should be such that f(Ak(w), Ak(w′)) is still a componentwise Eulerian adjacency matrix.
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FIG. 4: Relative entropy H1(w′||w) of cyclic binary words w,w′ ∈ {0, 1}`/ ∼◦ as a function of x′00 and x′∗, where ` = 256,
x00 = 32, and x∗ = 80. Regions where H1 > ` are shaded (from left to right, they correspond to words close to 1 . . . 1,
0 . . . 01 . . . 1, and 0 . . . 0). The red contour delineates where the sum of the entries of A�A′ equals `. This makes it clear that
values of the relative entropy exceeding ` are due to a very large disparity between the input matrices. An alternative approach
guaranteeing, e.g., H(w′||w) < `(w) ∨ `(w′) would appear to either require working directly with the cycle spaces of A and A′

or the blunt invocation of a threshold.

V. APPLICATIONS

A. Biological systematics

Molecular phylogenetics–i.e., the analysis of evolutionary relationships based on hereditary molecular
characteristics–and biological classification of organisms typically focus on comparing DNA sequences [9]. A particu-
larly convenient form of DNA for this purposes is mitochondrial DNA (mtDNA). mtDNA is an extremely economical
repository of information in that nearly every base pair in human mtDNA is known to code for some protein or RNA
product, and there is even overlap between coding regions; meanwhile mammalian mtDNA sequences are only on the
order of 20k base pairs. Moreover, mtDNA is not highly conserved and mutates rapidly.

In figures 6 and 7 below we show that relative de Bruijn entropy produces results comparable if not superior
to an edit distance (cf. figure 8) for constructing phylogenetic trees that easily capture most of the evolutionary
relationships among primates (cf. figure 5) from mtDNA sequences alone. Furthermore, the comparative performance
of the relative entropy is likely to improve in other problem domains that can actually leverage the fact that the
relative entropy captures local correlations while ignoring global correlations (cf. §V C).

It is worth noting that the technique outlined here is alignment-free [9], and a suitable implementation optimized for
speed (which our current implementation certainly is not, cf. §IV A 3) is a promising candidate tool for bioinformatics.
In particular, it is an attractive alternative to current techniques such as those in [12, 18, 26, 27, 31] and the older
but perhaps conceptually closer approach of [15]. We note also that de Bruijn quivers have been considered in the
context of multiple alignment [22, 34, 35].

B. Textual comparison

There are numerous downstream applications of textual comparison, e.g. authorship attribution (see, e.g., [25]). It
may be fruitful to engage in a dramatic simplification of textual comparison at large scales with relative de Bruijn
entropy by, e.g., working with the results of part-of-speech tagging (perhaps focusing in particular on function words
versus content words). Another possibility is to omit or “don’t care” words that do not frequently occur in a corpus
and treat the words themselves as symbols in a very large alphabet while keeping the order of the induced quivers
very small.
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FIG. 5: “The molecular phylogeny of 186 primates and four species representing the two outgroup orders of Scandentia,
Dermoptera, and rooted by Lagomorpha”. Figure and quotation taken from [21] and used under the CC-BY-2.5 license (see
http://creativecommons.org/licenses/by/2.5/).
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FIG. 6: Automatically generated (cf. §B 3) phylogenetic tree using average linkage for k = 7 relative de Bruijn entropy
(unnormalized). Mismatches w/r/t the tree in figure 5 appear for the suborders Haplorrhini and Strepsirrhini, for the families
Cebidae and Lorisidae, and for the subfamily Callitrichinae. Note that Lorisiformes here should be labeled as Galagidae,
but this merely reflects an ambiguity in the input data annotation. Not explicitly shown, but also matched, are the tribes
Cercopithecini, Colobini, Papionini, and Presbytini, the subfamilies Homininae and Lorisnae, the superfamily Hominoidea, and
the infraorders Lorisformes (cf. previous comment) and Simiformes.
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FIG. 7: Phylogenetic tree using average linkage for k = 7 relative de Bruijn entropy (normalized). Note that this and the
previous figure are quantitatively very similar. The mismatches are the same as in the previous figure, with the addition of
Lorisinae; apart from this, matched but unshown taxnomical groupings are also as in the previous figure.
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FIG. 8: Average linkage for (Levenshtein) edit distance (unnormalized). Note that while the edit distance results match
Strepsirrhini and Lorisidae, they fail to match the more fine-grained taxa Macaca and Homindae, the latter of which is
particularly important to members of, e.g., Homo sapiens. (NB. Cercopithecinae and Cercopithecidae are ambiguously labeled
here and in previous figures due to the input data annotation and as such are not remarked on for comparative evaluation.)
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C. Behavioral analysis of computer programs

Notwithstanding the interesting applications discussed above, the raison d’être of the present paper is the anticipated
application of its theory to the low-level behavioral analysis of computer programs of unknown provenance. Although
the general problem of disassembly of binary executable code is undecidable, interactive disassembly and automated
reverse engineering techniques can facilitate static code analysis. In particular, a disassembled binary executable
program may be conveniently represented in a platform-independent intermediate language such as REIL [10] or an
enhanced variant called Power-REIL (PREIL). In turn, individual machine-level instructions (or short sequences of
them) can be mapped to a reduced set of behaviors, which serve as the symbols in a prospective alphabet. One or
more of these behaviors or symbols may serve as a flavor of “don’t care”.

An abstract view of the preceding enterprise consists of annotating (a suitable coarse-graining of) the program’s
control flow graph with the appropriate behaviors: vertices are annotated with a control flow behavior, and edges
are annotated with a sequence of other behaviors. Specific executions of the program correspond to walks in the
control flow graph, which induce corresponding sequences of behaviors–i.e., words over the behavior alphabet. Broad
coverage of the control flow graph can be accelerated through dynamic execution [14]. At this point one has a set
of words corresponding to representative program behavior sequences. Comparing these (or extracted subwords) to
words containing exemplars of bad behavior can then inform security assessments [8].

The rationale for using relative de Bruijn entropy here versus a more familar construct such as edit distance is
straightforward. The relative de Bruijn entropy compares all of the local structure of words while remaining agnostic
to the global structure. Because of this, it is particularly well suited to comparing words corresponding to different
paths through a control flow graph, where “motifs” may appear with greater location variability than in biological
sequences. In particular, it is natural to expect that loops containing complex sub-flow graphs are better suited to
analysis with relative de Bruijn entropy than an edit or dynamic programming metric on words.
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APPENDIX A: SPIN MODELS

In this appendix, we briefly mention the simple connection (via the transfer matrix method) of de Bruijn quivers
and entropies with the physics of finite one-dimensional spin models.

A local potential of order k is a function E : Ak → R. The corresponding energy of a cyclic word w with `(w) ≥ k is

E(w) :=

`(w)∑
j=1

E(wj . . . wj+k−1). (A1)

A probability distribution of the form P(w) = e−βE(w)/Z(β) over cyclic words of some fixed length ` defines the
canonical ensemble of a circular one-dimensional spin model, or more generally a Gibbs field [3]. In statistical physics,
β = 1/kBT , where kB is the Boltzmann constant, T is the absolute temperature, and the normalizing factor Z(β) is
the so-called partition function. It turns out that every quantity of physical interest (e.g., entropy, internal energy,
free energy, etc.) can be computed from a system’s partition function, and its determination is correspondingly the
central goal of statistical physics [19].

For example, taking A = {0, 1}, σj := 2wj − 1, and E(wjwj+1) := −2Jσjσj+1 − Kσj reproduces the 1D (spin-
1/2) Ising model describing model magnetic systems. Here the spins σj represent magnetic dipoles, J represents the
strength of the dipole-dipole coupling, and K represents the external magnetic field. Another example is furnished
by taking A = {A,C,G, T} and defining a local potential by the nearest-neighbor Gibbs free energy parameters
quantitatively describing oligomeric DNA hybridization [24]. [42]

The transfer matrix method facilitates the calculation of Z1/` and its limit as `→∞. For example, it is a standard
result that for the 1D Ising model

lim
`→∞

Z1/` = eβJ coshβK +

√
e2βJ sinh2 βK + e−2βJ . (A2)
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The particular flavor of transfer matrix method embodied in (4) enables the exact calculation of Z1/` for ` < ∞ by
noting that

Z =
∑
w

e−βE(w) =
∑
x00,x∗

W1e
−βE =

∑
x00,x∗

eH1−βE (A3)

along with

E(w) ≡ E(x00, x∗; `) = 2Kx00 + (4J + 2K)x∗ − (J +K)`. (A4)

This is superfically rather different than writing an expression of the form Z = Tr(Λ`) as per a typical application of
the transfer matrix method in physics, but in fact both approaches turn out to have the same essential content and
structure [28].

APPENDIX B: DATA AND FIGURE GENERATION

NB. MATLAB code detailed in §C is called throughout this section.

1. §III B

The figures in §III B were generated using the following MATLAB commands:

A1 = 4*[2,5;5,4];

L = sum(sum(A1)); % 256

e = nan(L/2,L);

ce = nan(L/2,L);

e2 = nan(L/2,L);

ce2 = nan(L/2,L);

for j = 1:L/2

for k = 1:(L-1)

[j k] % for tracking progress

A2 = [k-1,j;j,L-(k-1)-2*j]; % same length

Aa = max(A1-A2,0);

Ab = max(A2-A1,0);

A = Aa’+Ab;

if any(any(A2<0)) % then A2 is ill-formed

else

e(j,k) = equiverentropy(A);

ce(j,k) = cequiverentropy(A);

end

e2(j,k) = equiverentropy(A2);

ce2(j,k) = cequiverentropy(A2);

end

end

H = ce2/log(2);

figure;[C,h] = contour(H,16:16:256,’k’);

clabel(C,’manual’);

hold;plot((1:L/2),L/2-(1:L/2)+1,’k:’);

set(gca,’XTick’,0:32:256)

set(gca,’YTick’,0:32:128)

xlabel(’x_0_0’);

ylabel(’x_*’);

title(’H_1 = log_2 W_1’);

Hmid = mean(H(:,[L/2,L/2+1]),2);

ind = find(~isnan(Hmid));

p = polyfit(ind,Hmid(ind),2);

figure;plot(1:4:(L/2),Hmid(1:4:end),’ko’,1:(L/2),p(1)*(1:(L/2)).^2+p(2)*(1:(L/2))+p(3),’k:’);

axis([0 L/2 0 L]);

set(gca,’XTick’,[]);

set(gca,’YTick’,[]);

xlabel({’x_* with (x_0_0,x_*) intermittently sampled’,’along vertical domain bisector’});

h = legend(’H_1 = log_2 W_1’,’naive quadratic fit’,4);
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pvert = p;

Hmid = mean(H([L/4,L/4+1],:),1);

ind = find(~isnan(Hmid));

p = polyfit(ind,Hmid(ind),2);

figure;plot(ind(1:8:end),Hmid(ind(1:8:end)),’ko’,1:L,p(1)*(1:L).^2+p(2)*(1:L)+p(3),’k:’);

axis([0 L L/2 L]);

set(gca,’XTick’,[]);

set(gca,’YTick’,[]);

xlabel({’x_* with (x_0_0,x_*) intermittently sampled’,’along horizontal domain bisector’});

h = legend(’H_1 = log_2 W_1’,’naive quadratic fit’,4);

phorz = p;

[x,y] = meshgrid(1:L,1:L/2);

x2 = x+(x.*y)./(L/2-y); y2 = y;

ind = intersect(find(~isnan(H)),find(~isinf(x2)));

w = griddata(x2(ind),y2(ind),H(ind),x,y);

figure;[C,h] = contour(w,16:16:L,’k’);

clabel(C,’manual’);

hold;plot(1:L,L/4,’k--’);

g = phorz(1)*x.^2+phorz(2)*x+phorz(3)+pvert(1)*y.^2+pvert(2)*y+pvert(3);

g = g/2; % horz and vert double count

[C2,h2] = contour(g,[224,240],’r’);

clabel(C2,’manual’,’Color’,’r’);

set(gca,’XTick’,0:32:256)

set(gca,’YTick’,0:32:128)

xlabel(’(1+x_*/(L/2-x_*))x_0_0’);

ylabel(’x_*’);

title(’black: H_1 = log_2 W_1; red: contours of naive quadratic fit’);

2. §IVB3

Figure 4 in §IV B 3 was generated using the following MATLAB commands:

A1 = 4*[2,5;5,4];

L = sum(sum(A1)); % 256

ce = nan(L/2,L);

ce2 = nan(L/2,L);

for j = 1:L/2

for k = 1:(L-1)

[j k] % for tracking progress

A2 = [k-1,j;j,L-(k-1)-2*j]; % same length

Aa = max(A1-A2,0);

Ab = max(A2-A1,0);

A = Aa’+Ab;

if any(any(A2<0))

else

ce(j,k) = cequiverentropy(A);

end

ce2(j,k) = cequiverentropy(A2);

end

end

LL = nan(L/2,L);

LM = nan(L/2,L);

for j = 1:L/2

for k = 1:(L-1)

A2 = [k-1,j;j,L-(k-1)-2*j]; % same length

Aa = max(A1-A2,0);

Ab = max(A2-A1,0);

A = Aa’+Ab;

if any(any(A2<0))

else

LL(j,k) = sum(sum(A));

LM(j,k) = 1;

end
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end

end

delta = L/8;

figure;

contourf(ce/log(2),[L,L],’k’,’LineColor’,’none’);

colormap(gray);

hold;

[C,h] = contour(ce/log(2),delta:delta:2*L,’k’);

contour(LL,[L,L],’r’)

caxis([0 L*1.25]);

set(gca,’XTick’,1:delta:(L+1),’XTickLabel’,0:delta:L)

set(gca,’YTick’,0:delta/2:L/2)

xlabel(’x’’_0_0’);

ylabel(’x’’_*’);

title(’H_1(w’’||w) with x_0_0 = 32 and x_* = 80’);

clabel(C,’manual’)

3. §VA

The following commands were applied to two input text files: genbankfile and fastafile, which respectively
contained 109 GenBank and FASTA-formatted mtDNA sequences of a broadly representative set of primates, and
obtained as described in the code comments in §C 5. genbankfile was used purely for its annotations; the remainder
of the analysis used fastafile. The computation required less than 2 hours in a single MATLAB session on a
standard laptop and automatically generated figures 6 and 7. Figure 8 was generated along similar lines using data
produced from a Levenshtein distance routine in Python that is not included here.

%% Preliminaries

fp = fastaparse(fastafile);

N = length(fp.seq);

kmax = 7;

alpha = ’ACGTN’;

%% Radix word quivers

for k = 1:kmax

for j = 1:N

rwq{k}{j} = radixwordquiver(fp.seq{j},k,alpha);

[j,k] % for tracking progress

end

end

disp(’radix word quivers done’);

%% Entropies of individual words

for k = 1:kmax

H1{k} = zeros(1,N);

for j = 1:N

H1{k}(j) = cequiverentropy(rwq{k}{j});

end

k % for tracking progress

end

disp(’individual entropies done’);

%% Relative entropies

for k = 1:kmax

H{k} = zeros(N);

for ja = 1:N

for jb = ja:N

M = boxminus(rwq{k}{ja},rwq{k}{jb});

H{k}(ja,jb) = cequiverentropy(M);

end

[ja,k] % for tracking progress

end

H{k} = H{k}+H{k}’;

end

disp(’relative entropies done’);

%% Construct radix quivers for concatenated words and compute their entropy

% This is significantly more efficient than forming the radix quivers

% directly

n = length(alpha);
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for k = 1:kmax

for i = 1:N

u = fp.seq{i};

Au = rwq{k}{i};

for j = i:N

v = fp.seq{j};

Av = rwq{k}{j};

crwq = concatenateradixwordquiver(u,v,Au,Av,alpha);

Hcrwq{k}(i,j) = cequiverentropy(crwq);

end

[i,k] % for tracking progress

end

% Symmetrize and avoid double-counting the diagonal

Hcrwq{k} = Hcrwq{k}+Hcrwq{k}’-diag(diag(Hcrwq{k}));

end

disp(’concatenated radix quivers and entropies done’);

%% Linkages

for k = 1:kmax

sf{k} = squareform(H{k});

sfnorm{k} = squareform(H{k}./Hcrwq{k});

tree{k} = linkage(sf{k});

treeav{k} = linkage(sf{k},’average’);

treecp{k} = linkage(sf{k},’complete’);

treenorm{k} = linkage(sfnorm{k});

treenormav{k} = linkage(sfnorm{k},’average’);

treenormcp{k} = linkage(sfnorm{k},’complete’);

k % for tracking progress

end

disp(’linkages done’);

%% Taxonomic info

% genus/species

for j = 1:N

i1 = max(strfind(fp.desc{j},’|’))+2;

i2 = min(strfind(fp.desc{j},’mitochondrion, complete genome’))-1;

desc{j} = fp.desc{j}(i1:i2);

[genus{j},remain] = strtok(desc{j},’ ’);

species{j} = strtok(remain,’ ’);

genusspecies{j} = [genus{j},’ ’,species{j}];

end

% Other info

taxa = genbankorganism(genbankfile);

% Exclude taxonomic info above order (for Primates)

for j = 1:N

taxa{j} = taxa{j}(10:end);

end

%% Produce phylogenetic trees

phylotree(treeav{kmax},genusspecies,taxa);

phylotree(treenormav{kmax},genusspecies,taxa);

phylotree(treenormcp{kmax},genusspecies,taxa);

APPENDIX C: MATLAB CODE

1. boxminus.m

function y = boxminus(A1,A2);

y = max(A1-A2,0)+max(A2-A1,0)’;

2. cequiverentropy.m

function y = cequiverentropy(A);

% Computes the entropy (in nats) of a componentwise Eulerian quiver with
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% adjacency matrix A

%% Basic error checking

if size(A,1)-size(A,2)

error(’A is not square’);

end

deg1 = sum(A,1);

deg2 = sum(A,2)’;

if any(deg1-deg2)

error([’sum(A,1) not equal to sum(A,2),’...

’so A is not componentwise Eulerian’]);

end

if ~any(any(A))

y = 0; return;

end

%% Shrink A by retaining only nontrivial vertices

ind = find(deg1); % = find(deg2);

A = A(ind,ind);

%% Find (strongly) connected components of A

scc = strongconcoms(A);

nscc = max(scc);

%% Compute H(A(find(scc==j),find(scc==j)))

H = 0;

for j = 1:nscc

sccj = find(scc==j);

Aj = A(sccj,sccj);

Hj = equiverentropy(Aj);

H = H+Hj;

end

y = H;

3. concatenateradixwordquiver.m

function y = concatenateradixwordquiver(u,v,Au,Av,alpha);

% Given two compatible outputs of radixwordquiver, this RAPIDLY produces

% the quiver corresponding to the concatenation of the underlying words.

% That is, given words u, v with corresponding radix word quiver matrices

% Au, Av, the RWQ matrix for uv is Auv = Au+Av+B, where B corresponds to

% the deletion of 2k edges and the insertion of 2k (typically different)

% edges. Note that this is symmetric because the cyclic word uv equals the

% cyclic word vu.

% alpha is the alphabet used to construct Au and Av.

% Example:

% i1 = 56; i2 = 78;

% temp = concatenateradixwordquiver(fp.seq{i1},fp.seq{i2},...

% rwq{3}{i1},rwq{3}{i2},’ACGTN’);

% temp2 = radixwordquiver([fp.seq{i1},fp.seq{i2}],3,’ACGTN’);

% temp-temp2 % Should be zero (as when tested at time of writing)

%% Rudimentary error checking

s = size(Au);

n = length(alpha);

k = fix(log(s(1))/log(n));

if any(s-size(Av))

error(’incompatible sizes’);

elseif s(1)-s(2)

error(’not square’);

elseif abs(k-log(s(1))/log(n)) > 10^-6

error(’k not an integer’);

end
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%% Other preliminaries

nary = n.^((k-1):-1:0)’;

Lu = length(u);

Lv = length(v);

% Map letters to 0:(n-1)

U = zeros(size(u));

V = zeros(size(v));

for j = 1:n

U(u==alpha(j))=j-1;

V(v==alpha(j))=j-1;

end

UU = [U,U];

VV = [V,V];

UV = [U,V];

VU = [V,U];

% Initialize sparse matrix

B = sparse(n^k,n^k);

%% Deletions

for j = 1:k

del01 = UU((Lu-k+j):(Lu-1+j))*nary;

del11 = UU((Lu-k+j+1):(Lu+j))*nary;

B(del01+1,del11+1) = B(del01+1,del11+1)-1;

del02 = VV((Lv-k+j):(Lv-1+j))*nary;

del12 = VV((Lv-k+j+1):(Lv+j))*nary;

B(del02+1,del12+1) = B(del02+1,del12+1)-1;

end

%% Insertions

for j = 1:k

ins01 = UV((Lu-k+j):(Lu-1+j))*nary;

ins11 = UV((Lu-k+j+1):(Lu+j))*nary;

B(ins01+1,ins11+1) = B(ins01+1,ins11+1)+1;

ins02 = VU((Lv-k+j):(Lv-1+j))*nary;

ins12 = VU((Lv-k+j+1):(Lv+j))*nary;

B(ins02+1,ins12+1) = B(ins02+1,ins12+1)+1;

end

%% Output

y = Au+Av+B;

4. equiverentropy.m

function y = equiverentropy(A);

% Computes the entropy (in nats) of an Eulerian quiver with adjacency

% matrix A.

% Basic care has been exercised to ensure that most of the computation time

% is spent on the fundamental determinant evaluation instead of, e.g.,

% computing a GCD or the sum of log-factorial terms. There is probably

% still room for improvement though.

%% Force A to be sparse to enable the sparse LU factorization below

A = sparse(A);

%% Basic error checking

if size(A,1)-size(A,2)

error(’A not square’);

end

deg1 = sum(A,1);

deg2 = sum(A,2)’;

if any(deg1-deg2)

error(’A not Eulerian’);

end

if any(any(A<0))
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warning(’negative entry’); y = NaN; return;

end

if ~any(any(A))

y = 0; return;

end

%% Shrink A by retaining only nontrivial vertices

ind = find(deg1); % = find(deg2);

A = A(ind,ind);

%% Build table for quicksumlogfactorial function below

% The largest degree governs the required table size

logfac = cumsum(log(1:max(deg1)));

%% Find g = gcd(A) non-recursively (for speed) and construct its divisors

% This approach is much faster in MATLAB than a recursive GCD, let alone

% one that doesn’t restrict consideration to unique nonzero entries of A.

% In, e.g., C this would not be the correct approach

[J,K] = find(A);

g = 1;

if numel(J)

% Form vertical array of relevant entries

AJK = A(sub2ind(size(A),J,K));

% Only consider the unique values in AJK (note that these are sorted

% from smallest to largest). NB. This approach appears to be faster

% than, e.g., omitting [J,K] = find(A), changing "if numel(J)" to

% "if any(A)" and setting AJK = setdiff(unique(A),0);

AJK = unique(AJK);

% The gcd must be a divisor of AJK(1)--so first form all the divisors

divAJK1 = divisors(AJK(1));

% Now just look for any remainders under trial division of the entries

% of A by each divisor

for k = 1:numel(divAJK1)

if ~mod(AJK,divAJK1(k))

g = divAJK1(k);

end

end

end

div = divisors(g);

nd = numel(div);

%% Totient of each divisor

phi = ones(1,nd);

for k = 1:nd

d = div(k);

fd = factor(d);

ufd = unique(fd);

nufd = length(ufd);

phi(k) = 1;

for m = 1:nufd

nm = sum(fd==ufd(m));

phi(k) = phi(k)*max((ufd(m)^(nm-1))*(ufd(m)-1),1);

end

end

%% Compute the entropy

H = 0; % The initialization to 0 vs -Inf is ameliorated at the very end

for k = 1:nd

d = div(k);

Ad = A/d;

degd = sum(Ad,2)’; % = sum(Ad,1)

L = diag(degd)-Ad;

L2 = L(2:end,2:end);

%% Compute log(det(L2)) with a modicum of care

% A naive yet nontrivial approach would be to compute

% logt = real(trace(logm(full(L2))));

% But this is bad: logm requires a full matrix and it’s a

% computationally nasty way to do things--though not quite as bad as

% logt = log(det(L2));

% We can do better with a sparse LU decomposition
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% [LL,UL,PL,QL,RL] = lu(L2);

% logt = sum(log(abs(diag(UL))))+sum(log(abs(diag(RL))));

% though on at least one occasion this gave the error message

% "Sparse LU failed." This error was not found on the internet and no

% real attempt was made to understand it--instead we use the

% perfunctory remedy of a try-catch block to deal with it below using

% the alternative of the Q-less sparse QR decomposition, e.g.

% RL = qr(L2);

% logt = sum(log(abs(diag(RL))));

% which folklore suggests is more stable--though testing indicates that

% this is also much slower.

%

% We could go much deeper down the rabbit hole, exploiting the sparsity

% and integrality of L with great sophistication by, e.g. using

% Chinese remaindering/lifting and/or Smith normal forms). A partial

% bibliography of relevant references follows:

% \bibitem{PanYuStewart}Pan, V. Y., Yu, Y., and Stewart, C. ‘‘Algebraic

% and numerical techniques for the computation of matrix

% determinants.’’ \emph{Comp. Math. Appl.} {\bf 34}, 43 (1997).

% \bibitem{KaltofenVillard}Kaltofen, E. and Villard, G. ‘‘Computing the

% sign or the value of the determinant of an integer matrix, a

% complexity survey.’’ \emph{J. Comp. Appl. Math.} {\bf 162}, 133

% (2004).

% \bibitem{Ogita}Ogita, T. ‘‘Exact determinant of integer matrices.’’

% \emph{Proc. 4th. Int. Workshop on Reliable Engineering Computing.}

% (2010).

% \bibitem{ElsheikhEtAl}Elsheikh, M. \emph{et al.} ‘‘Fast computation

% of Smith forms of sparse matrices over local rings.’’ \emph{ISAAC}

% (2012).

% \bibitem{EberlyEtAl}Eberly, W. \emph{et al.} ‘‘Faster inversion and

% other black box matrix computations using efficient block

% projections.’’ \emph{ISAAC} (2007).

% \bibitem{DumasSaundersVillard}Dumas, J.-G., Saunders, B. D., and

% Villard, G. ‘‘On efficient sparse integer matrix Smith normal form

% computations.’’ \emph{J. Symb. Comp.} {\bf 32}, 71 (2001).

try

% NB. It may be advantageous to permute L2, but as yet we don’t

[LL,UL,PL,QL,RL] = lu(L2);

logt = sum(log(abs(diag(UL))))+sum(log(abs(diag(RL))));

catch err

if (strcmp(err.identifier,’MATLAB:sparseLUfactor:internalError’))

% Try the supposedly more stable but slower Q-less QR

RL = qr(L2);

logt = sum(log(abs(diag(RL))));

else

rethrow(err);

end

end

%%

logc = logt+quicksumlogfactorial(degd-1,logfac);

logfAd = quicksumlogfactorial(Ad,logfac);

logterm = log(phi(k))+logc-log(d)-logfAd;

H = logplus(H,logterm);

end

%% Output

% "H = log(exp(H)-1)" here comes from initialization to 0 vs -Inf (see the

% start of the "Compute the entropy" code cell/section)

y = H+log(1-exp(-H));

end % END MAIN FUNCTION

%% LOCAL FUNCTIONS BELOW

%%

function y = divisors(x);

% Returns the divisors of x

fx = factor(x);
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nf = numel(fx);

mask = zeros(2^nf,nf);

temp = dec2bin(0:((2^nf)-1),nf);

div0 = zeros(2^nf,1);

for j = 1:2^nf

for k = 1:nf

mask(j,k) = str2num(temp(j,k));

end

div0(j) = prod(max(mask(j,:).*fx,1));

end

y = unique(div0)’;

end

%%

function y = logplus(loga,logb);

% Given log(a) = loga and log(b) = logb, returns y = log(a+b). Naively,

% y = loga+log(1+exp(logb-loga));

% However, we need to take a little care to avoid under/overflow.

X = max(loga,logb);

x = min(loga,logb);

y = X+log(1+exp(x-X));

end

%%

function y = quicksumlogfactorial(M,logfac);

% Given a nonnegative integer array M, compute the sum of the logarithms of

% factorials in M in a careful way using the precomputed table

% logfac = cumsum(log(1:mM)), where mM = max(...max(M)...)

x = 0;

M = M(find(M>1)); % find(M>1) is (MUCH) better to use than find(M)

for j = 1:numel(M)

x = x+logfac(M(j));

end

y = x;

end

5. fastaparse.m

function y = fastaparse(fastafile);

% Parses FASTA format text file. The (canonical) example used here is a

% file containing 616 complete mammalian mitochondrial genomes accessed

% 20140124 from the URL

% http://www.ncbi.nlm.nih.gov/nuccore/?term=mitochondrion[Definition]+AND+"

% complete+genome"[Definition]+AND+srcdb_refseq[Properties]+AND+Mammalia[Or

% ganism]

%

% A smaller example is a file containing 109 complete primate genomes

% accessed 20140205 from the URL

% http://www.ncbi.nlm.nih.gov/nuccore/?term=mitochondrion[Definition]+AND+"

% complete+genome"[Definition]+AND+srcdb_refseq[Properties]+AND+Primates[Or

% ganism]

% Example usage for mtDNA FASTA files:

% fp = fastaparse(fastafile);

% for j = 1:length(fp.desc)

% i1 = max(strfind(fp.desc{j},’|’))+2;

% i2 = min(strfind(fp.desc{j},’mitochondrion, complete genome’))-1;

% desc{j} = fp.desc{j}(i1:i2);

% [genus{j},remain{j}] = strtok(desc{j},’ ’);
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% [species{j},remain{j}] = strtok(remain{j},’ ’);

% seq{j} = fp.seq{j};

% end

fasta = fileread(fastafile);

lb = linebreak(fasta);

L = length(lb);

% Get line numbers for description lines

dline = find(cellfun(@numel,strfind(lb,’>’)));

N = length(dline);

% Phantom line for convenience

dline = [dline,L];

% Assemble components into sequences and their descriptions

for j = 1:N

n = dline(j);

s.desc{j} = strtrim(lb{n});

n = n+1;

s.seq{j} = ’’;

while n < dline(j+1)

s.seq{j} = [s.seq{j},strtrim(lb{n})];

n = n+1;

end

%% FOR CONVENIENCE replace any non-ACGT characters with ’N’

s.seq{j} = regexprep(s.seq{j},’[^ACGT]’,’N’);

end

y = s;

6. genbankorganism.m

function y = genbankorganism(genbankfile);

% Used to extract organism data from a Genbank file

gb = fileread(genbankfile);

lb = linebreak(gb);

L = length(lb);

% Get line numbers for ORGANISM lines

orgline = find(cellfun(@numel,strfind(lb,’ ORGANISM ’)));

% Get line numbers for REFERENCE lines

refline = find(cellfun(@numel,strfind(lb,’REFERENCE ’)));

N = length(orgline);

for j = 1:N

% Get the first REFERENCE line after each ORGANISM line

nextrefline = refline(find(refline>orgline(j),1));

lines = (orgline(j)+1):(nextrefline-1);

tax{j} = ’’;

for k = 1:numel(lines)

tax{j} = [tax{j},strtrim(lb{lines(k)})];

end

tax{j} = strrep(tax{j},’ ’,’’);

tax{j} = strrep(tax{j},’.’,’’);

remain = tax{j};

k = 1;

while remain

[taxa{j}{k},remain] = strtok(remain,’;’);

k = k+1;

end

end
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y = taxa;

7. linebreak.m

function y = linebreak(x);

% Break a string x into nontrivial lines according to return characters.

% Newlines are replaced with return characters beforehand.

% Recall that \n = char(10) and \r = char(13)

x = strrep(x,char(10),char(13));

tworets = strfind(x,char([13 13]));

while tworets

x = strrep(x,char([13 13]),char(13));

tworets = strfind(x,char([13 13]));

end

rets = find(x==char(13));

lr = length(rets);

if lr == 0

lb{1} = x;

lb{2} = ’’;

else

lb{1} = x(1:rets(1));

for j = 2:lr

lb{j} = x((rets(j-1)+1):rets(j));

end

lb{lr+1} = x(rets(end)+1:end);

end

y = lb;

% NB. Reassembly is easy, but included explicitly here in a comment for

% convenience. Below, if lb = linebreak(x), then x2 = x:

% x2 = ’’; for j = 1:length(lb), x2 = [x2,lb{j}]; end

8. phylotree.m

function y = phylotree(tree,labs,taxa);

% Automatically produce a rooted phylogenetic tree.

% tree should be obtained from linkage of data with labels labs.

% taxa = genbankorganism(genbankfile);

%% Preliminary plot

figure;

[H,T,outperm] = dendrogram(tree,0,’orientation’,’right’,’labels’,labs);

set(H,’Color’,’k’);

hold;

% Plot geometry

DAR = get(gca,’DataAspectRatio’);

xyR = DAR(1)/DAR(2);

xL = get(gca,’XLim’);

%% Get inverse of outperm

N = length(outperm);

temp = sortrows([outperm’,(1:N)’]);

invperm = temp(:,2)’;

%% Rudimentary error checking

if N-numel(labs)
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error(’wrong number of labels’);

end

%% Get children of jth internal node

% Nodes are 1:N for leaves and (N+1):(2*N-1) for internals, from bottom up.

% I.e., the shortest branches come from node N+1, etc.

for j = 1:N-1

children{j} = tree(j,1:2);

while any(children{j}>N)

% Find next child with children (an "adult")

ind = find(children{j}>N,1,’first’);

% Remove the adult and add its children

adult = children{j}(ind);

children{j} = union(setdiff(children{j},adult),tree(adult-N,1:2));

end

end

%% For each internal node, find two key cell arrays of words

% A: the intersection of taxa words under the node

% B: the union of taxa words NOT under the node

% Along the way, find the union alltaxa of all taxa words for the tree

alltaxa = {};

% This loop builds A and alltaxa

for j = (N-1):-1:1

t = taxa{children{j}(1)};

alltaxa = union(alltaxa,t);

A{j} = t;

for k = 2:length(children{j})

t = taxa{children{j}(k)};

alltaxa = union(alltaxa,t);

A{j} = intersect(A{j},t);

%B0{j} = union(B0{j},t);

end

end

% % This loop builds B

for j = (N-1):-1:1

otherchildren = setdiff(1:N,children{j});

B{j} = {};

for k = 1:length(otherchildren)

B{j} = union(B{j},taxa{otherchildren(k)});

end

end

%% For each internal node, its label is the "highest-ranking" member of A\B

for j = (N-1):-1:1

% The first child is as good as any to use...

t = taxa{children{j}(1)};

C = setdiff(A{j},B{j});

label{j} = ’’;

for k = length(t):-1:1

if any(strcmp(t{k},C))

label{j} = t{k};

end

end

end

%% Add labels

dx1 = .005*(xL(2)-xL(1));

for j = 1:N-1

if length(label{j})

x1 = tree(j,3)+2*dx1;

x2 = mean(invperm(children{j}));

text(x1,x2,label{j},’FontUnits’,’normalized’,’FontSize’,1/N);

x2max = max(invperm(children{j}));

x2min = min(invperm(children{j}));

x01 = x1-dx1;

plot([x01,x01],[x2min,x2max],’r’);

end

end
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%% Axes ticks/etc.

set(gca,’FontUnits’,’normalized’,’FontSize’,1/N);

set(gca,’TickLength’,[0 0]);

y = label;

9. radixwordquiver.m

function y = radixwordquiver(w,k,alpha);

% Constructs a de Bruijn quiver of order k for a word w over the alphabet

% alpha, whose order is presumed to induce the lex order, which is used for

% the adjacency matrix A that is actually returned.

% Ex. y = radixwordquiver(’GGATTAATGACTAATCAGC’,1,’ACGT’);

% NB. Instead of ’ACGT’ for the last argument, it might be necessary to

% use, e.g. ’ACGTN’, cf. fastaparse.

%%

if numel(setdiff(unique(w),alpha))

setdiff(unique(w),alpha)

error(’wrong alphabet’);

end

% Alphabet radix

n = length(alpha);

if n^k > 2^64

error(’n^k > 2^64; try wordquiver instead’);

end

%% Preliminaries

L = length(w);

% Cheap proxy for cyclic word

w = [w,w(1:k)];

% Map letters to 0:(n-1)

W = zeros(size(w));

for j = 1:n

W(w==alpha(j))=j-1;

end

% Initialize sparse matrix

A = sparse(n^k,n^k);

%% Initialization

% Initial k-gram

J0 = 1;

J1 = k;

kg = W(J0:J1);

% ind1 is the index (starting from zero) for the initial k-gram

nary = n.^((k-1):-1:0)’;

ind1 = kg*nary;

%% Main loop

for j = 1:L

ind0 = ind1;

% Get upcoming k-gram

J0 = j+1;

J1 = j+k;

kg = W(J0:J1);

ind1 = kg*nary;

% Update the adjacency matrix

A(ind0+1,ind1+1) = A(ind0+1,ind1+1)+1;

end

%% Output

y = A;
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10. strongconcoms.m

function y = strongconcoms(A);

% Strongly connected components of a quiver with adjacency matrix A using

% the Dulmage-Mendelsohn decomposition

[n,n2] = size(A);

%% Basic error check

if n-n2

error(’A is not square’);

end

%% Set zero entries of diagonal to unity so that dmperm works correctly

A = A-spdiags(diag(A),0,n,n)+speye(n);

%% Dulmage-Mendelsohn decomposition

[p,q,r,s,cc,rr] = dmperm(A);

if any(p-q) | any(r-s)

error(’p-q or r-s have a nonzero entry’);

end

%% Assign strongly connected components

scc = zeros(1,n);

for j = 1:(length(r)-1)

scc(p(r(j):(r(j+1)-1))) = j;

end

%% Output

y = scc;

11. wordquiver.m

function y = wordquiver(w,k);

% Constructs a de Bruijn quiver of order k for a word w. Returns a struct

% with fields for the k-grams and the adjacency matrix with corresponding

% rows/columns.

%% Preliminaries

L = length(w);

% Cheap proxy for cyclic word

w = [w,w(1:k)];

% Initialize cell array for k-grams

kgs = {};

% Initialize sparse matrix

A = sparse(1,1);

%% Initialization

% Initial k-gram

J0 = 1;

J1 = k;

kg1 = w(J0:J1);

% Initialize cell array for k-grams

kgs{1} = kg1;

% ind1 == 1 is the index for the initial k-gram

ind1 = find(strcmp(kg1,kgs));

%% Main loop

for j = 1:L

kg0 = kg1;

ind0 = ind1;

% Get upcoming k-gram

J0 = j+1;

J1 = j+k;

kg1 = w(J0:J1);
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% See if we’ve encountered the upcoming k-gram before

ind1 = find(strcmp(kg1,kgs));

nind1 = numel(ind1);

if nind1 == 1 % We’ve seen the upcoming k-gram before...

% ...so do nothing

elseif nind1 == 0 % We haven’t seen it yet, so include it...

ind1 = length(kgs)+1;

kgs{ind1} = kg1;

% ...and appropriately expand the adjacency matrix

A(ind1,ind1) = 0;

else % Something is amiss

error(’more than one index’);

end

% Update the adjacency matrix

A(ind0,ind1) = A(ind0,ind1)+1;

end

%% Output

y.kg = kgs;

y.A = A;
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